Tag Archives: Foundation Design

NCHRP micropile study report published – NCHRP Report 989

At long last, the report for the NCHRP micropile study performed by Erik, Dan D., and Andy is published. The report, Reliability-Based Geotechnical Resistance Factors for Axially Loaded Micropiles, is the result of a considerable research effort that aims to rework AASHTO’s micropile design methods. Highlights of the research tasks are listed below.

 

  • Compile a database of micropile load tests and organize the database by micropile type and ground conditions.
  • Develop new presumptive and predictive models for micropile design. The presumptive models are based only on micropile type and ground condition; the predictive models further consider soil or rock strength.
  • Calibrate probabilistic resistance factors for micropile design based on presumptive and predictive models, and for designs based on site-specific load tests. If adopted, the resistance factors for designs based on load tests would be the first for AASHTO to be based on probabilistic calibration rather than fitting to historical practices.

 

The report can be downloaded for free from TRB’s website:

 

https://www.trb.org/Publications/Blurbs/182710.aspx

Goethals Bridge – Up and out of the ground

(Post and photos provided by John Turner, Ph.D., P.E., D.GE of DBA.)

DBA has had the privilege to be the geotechnical/foundation engineer for the Goethals Bridge Replacement (GBR)Project, a design-build project for the Port Authority of New York & New Jersey (PANYNJ). The project will replace the existing Goethals Bridge that was built in the 1920s and carries I-278 over the Arthur Kill River between Elizabeth, New Jersey and Staten Island, New York.

Construction of drilled shafts continues as the superstructure begins to emerge over the skyline between Elizabeth, NJ and Staten Island, NY.  The new bridge will be a dual-span 1,983-ft long cable-stayed bridge with approach spans of over 2,500 ft on each side.  The bridge is supported on over 200 drilled shaft foundations ranging in diameter from 4.5 ft to 10 ft and socketed into Passaic Formation siltstone.

Goethals April 2016

The GBR is a Public-Private Partnership (P3) that represents a major milestone for the PANYNJ in its distinguished history of bridge building in the greater New York City metropolitan area.  The existing Goethals Bridge along with the Outerbridge Crossing and the Bayonne Bridge comprise the three Port Authority bridges connecting Staten Island with New Jersey.  The Goethals Bridge and the Outerbridge Crossing are cantilever truss structures and both opened on the same day in 1928. They were designed by J.A.L. Waddell under the supervision of the eminent engineer Othmar H. Ammann (1879-1965), who was the designer of many other iconic bridges in the NY City area including the Bayonne Bridge (1931), the George Washington Bridge (1931), and the Verrazano Narrows Bridge (1964).  The designer of record for the replacement Goethals Bridge is Parsons Corporation, which is the successor firm of Robinson & Steinman, whose principal David B. Steinman was also a notable NY area bridge designer and a contemporary and rival of O.H. Ammann.

Each main pylon tower of the GBR is supported on a group of six 9-ft diameter drilled shafts and each anchor pier is supported by two 10-ft diameter shafts.  Approach piers are two-column bents with each column supported on a rock-socketed drilled shaft.

Goethals shaft 1

DBA is the foundation design engineer of record and this project provides an example of how rock-socketed drilled shafts can provide a reliable and cost-effective means of supporting a major bridge by taking advantage of the high resistances that can be achieved.  Key factors involved in taking advantage of rock sockets for this project were:  (1) load testing to demonstrate high axial resistances (>30 ksf side resistance and  >300 ksf base resistance), (2) utilization of all relevant construction QC/QA tools to ensure that rock sockets are constructed in a manner that is consistent with construction of the load-tested shafts that provide the basis of the design, (3) close collaboration between all members of the design-build team, and (4) adequate subsurface characterization, especially a thorough characterization of rock characteristics and their effect on socket resistances. Load testing for this project demonstrates that side and base resistances can be used in combination to design rock socketed shafts for axial loading.  This approach avoids the use of unnecessarily deep sockets, thereby minimizing the associated construction risks and costs.

Goethals rendering

The GBR project developer is NYNJ Link Developer, LLC and construction is being performed by a joint venture of Kiewit-Weeks-Massman (KWM).  Parsons is the lead designer.  A construction web-cam and additional information on the GBR can be found at the Port Authority’s website: http://www.panynj.gov/bridges-tunnels/goethals-bridge-replacement.html

NCHRP Synthesis 478 – Design and Load Testing of Large Diameter Open-Ended Driven Piles

nchrp_syn_478_Design and Load Testing of Large Diameter Open-Ended Driven Piles_2015

The Transportation Research Board (TRB) has released a synthesis report prepared by Dan and Robert on large diameter piles: NCHRP Synthesis 478, Design and Load Testing of Large Diameter Open-Ended Driven Piles.  The report is a summary of the state of practice with regard to Large Diameter Open-Ended Piles (LDOEPs) in the transportation industry.  We conducted a survey of state DOTs as well as interviews with private practitioners to summarize current practices as well as recommend best practices with regard to the selection, design, installation, and testing of LDOEPs.   Several state DOTs are using LDOEPs more regularly where large foundation loads may exist and/or the piles are subject to significant unsupported length due to scour, liquefaction, or very weak surficial soils. Marine construction conditions also favor the use of these piles, particularly where pile bents might be employed to eliminate footings.

You can download a PDF of the report or purchase a hard copy at the link below.

Brown, D.A. and Thompson, W.R. (2015). NCHRP Synthesis 478, Design and Load Testing of Large Diameter Open-Ended Driven Piles, Transportation Research Board, National Academies, Washington, D.C.

Foundations for the New Sacremento Entertainment and Sports Center

 

kingsarenanew_670

Contributed by Rob Saunders, P.E. – DBA

DBA has been working on an exciting new project currently under construction in downtown Sacramento, California: the new Sacramento Arena, known as the Entertainment and Sports Center (ESC).  The ESC will be a multi-use, publicly owned indoor arena. The Sacramento Kings will be the primary tenant and the arena is expected to host other indoor sports and music concerts, as well.  Once completed, the ESC will replace Sleep Train Arena as the home of the Kings.  According to Kings Chairman Vivek Ranadive, the 17,500-seat arena will be “one of the most iconic structures on the planet … It’s going to put Sacramento on the world map.”

turner

Turner Construction is the head of development for the new arena. Malcolm Drilling Company was awarded the contract to design and construct the foundation system.  DBA worked closely with Malcolm to design Omega piles (a drilled and grouted displacement pile) to serve as the foundations for the new arena.  The site presented unique design challenges, including liquefiable soil conditions and existing deep foundations from the demolisLogo_Malcolm_Stacked_Bluehed portion of the Downtown Plaza.

DBA’s design incorporates 18” and 24”  Omega piles.  An extensive site-specific load test program was performed to determine the axial resistances of the piles.  Eight test piles were instrumented with strain gauges to measure the load distribution in the piles.  Supplemental cone penetration testing was performed following load testing to better correlate the load test results with the subsurface conditions.

The piles were designed to resist ground motions from seismic events using site-specific ground curvature data developed by Pacific Engineering and Analysis. The piles were designed to resist the curvature at the anticipated pile section with only a single center reinforcing bar, eliminating the need to extend the entire cage to the bottom of the pile. This detail in the design is very important to ease the pile installation for the site conditions.

The final design incorporates a total of 952 piles to support the arena structure (346 18” dia. Piles and 606 24” dia. piles). The new arena is estimated to cost $477 million, with $255 million of that being funded by the City of Sacramento. The rest of the arena ($222 million) will be funded by the Sacramento Kings. Construction began October 29, 2014 and is planned to be completed by October of 2016.

The groundbreaking for the project was featured by the Sacremento Bee on October 29, 2014 (link).

Replacing the 89 Year Old Sellwood Bridge

DBA has had the pleasure of working with T.Y. Lin and SlaydenSundt JV in their effort to replace the Sellwood Bridge over the Willamette River in Multnomah County, Oregon, near Portland. Designed by Gustav Lindenthal, the existing Sellwood Bridge was constructed in 1925 to replace the Spokane Street Ferry, connecting the communities of Sellwood and West Portland.  In response to budget issues at the time, the Sellwood Bridge design was scaled back to minimize costs. Fast forward to 2014 and the existing Sellwood Bridge is now the only four-span continuous truss highway bridge in Oregon and possibly the nation. The bridge is extremely narrow, two lanes, no shoulder or median, and one small 4-ft sidewalk.  In addition to these shortcomings in design with respect to the modern age, the west end of the bridge was constructed on fill, and the hillside above the bridge is now slowly sliding toward the river. Ground movements have caused some of the girders to crack. Furthermore, the existing bridge was not designed to any seismic standards which present a major concern given the bridge’s location in the seismically active Pacific Northwest.

The new Sellwood Bridge will be a deck arch structure with three arches supporting the deck of the main river spans and is designed to the latest seismic standards. It will feature two 12-ft travel lanes, two-12 ft shared use sidewalks, and two 6.5-ft bike lane/emergency shoulders. Multnomah County is using the existing bridge truss on temporary pile foundations as a detour to save time and money during construction with minimal impact to traffic, people can always get quick loans without credit check process at any time if they have financial problems. According to www.cyclonebuildings.com, the original bridge truss was shifted on January 19, 2013. Complicating the move was the enormity of the bridge, an 1100-ft single truss weighing 3400 tons. In addition to the size and weight of the span, old age and its curved alignment added to the technical challenges. The impressive move took only 14 hours.  The detour bridge is currently fully operational and will continue to carry traffic until the summer of 2015 when the new bridge is scheduled to open.

DBA played key roles in the design and construction of the main arch piers. As part of the VE Design, DBA assumed engineering responsibility for the 10-ft diameter drilled shafts supporting Piers 4, 5, and 6 (4 & 5 being in the river and 6 on the eastern shore).  The lengths of these shafts ranged from 81 ft to 225 ft through a number of subsurface conditions which posed many challenges to construction. Subsurface conditions ranged from large loose cobbles/gravel (Catastrophic Flood Deposits) to cemented cobbles and gravel (Troutdale Formation), to very hard intact basalt bedrock. Due to the challenging geologic conditions and variability of these conditions across the site, DBA implemented an observational method in which the final shaft length determination was made on the basis of our on-site observations in relation to a set of predefined criteria. This approach provided the necessary flexibility to efficiently confront different subsurface conditions in a timely manner. Drilling subcontractor Malcolm Drilling successfully completed construction of the last of these shafts in mid-October 2013.

You can learn more about the bridge and the project at Multnomah County’s website, SellwoodBridge.org. The website has current field work updates, photo gallery, history of the project, and a live construction camera with daily, weekly, and monthly time-lapse videos.  There is also a time-lapse of the moving of the old truss.

written by Nathan Glinski, edited by David Graham

DBA Engineers Coauthor Cover Story of Latest DFI Magazine

https://danbrownandassociates.com/wp-content/uploads/2013/08/DFI-Cover-July-Aug-2013_small.jpg

Cover Image of the Hastings Mississippi River Arch Bridge

The featured article in the July/August 2013 issue of Deep Foundations, the magazine of the Deep Foundations Institute, is coauthored by Dan, Paul, and Rich Lamb, P.E., of the Minnesota Department of Transportation (MnDOT).  The article summarizes how load testing has been used successfully as part of the foundation design process by DBA and MnDOT on five major bridge projects along the Mississippi and St. Croix Rivers during the last 10 years and the lessons learned from these successive projects.   The featured bridge projects include two major design-build projects, the emergency replacement of the I-35W St. Anthony Falls Bridge (2007) and the Hastings Mississippi River Arch Bridge (2011).  The other traditional design-bid-build projects include the I-494 Wakota Mississippi River Bridge, the U.S. Hwy 52 Lafayette Mississippi River Bridge, and the St Croix River Bridge.  As is often the case, each of these projects presented unique geological and hydrogeological challenges to foundation design – despite the projects all being within 30 miles of each other – including thick layers of highly organic compressible soils overlying bedrock, layers of cobbles and boulders, artesian groundwater conditions, and bedrock ranging from weak weathered sandstone to very hard dolostone.  These varying conditions resulted in the use and testing of a variety of foundations.  Load testing “with a purpose” has proven to be an integral part of the design and construction process on these projects, as the load tests were not simply for verification of a design but provided valuable information used to optimize the designs and provide quality assurance of the construction practices.

Please read the full article here or in a copy of Deep Foundations, a bi-monthly magazine published by the Deep Foundations Institute.   DFI is an international technical association of firms and individuals involved in the deep foundations and related industry.  More information about DFI and how to become a member can be found at www.dfi.org.

Also see our Projects Page for more about some of these projects and our other major projects.

NCHRP Synthesis 429 – Geotechnical Information Practices in Design-Build Projects

nchrp_syn_429_cover

Early this year, NCHRP released a synthesis report on geotechnical practices related to design-build projects.  I have had writing a blog post on this on my “to do” list for a few months and finally got down the list!

NCHRP Synthesis 429 – Geotechnical Information Practices in Design-Build Projects is a report on the current practices of allocating and managing geotechnical risk through the use (or lack of!) geotechnical information in transportation project bid documents.  Even though design-build as a delivery process for projects has been around for a while now, the allocation of risk due to subsurface conditions is an issue still treated with a variety of approaches. 

Those of us who have been in this industry for a while know that a thorough geotechnical investigation reduces both cost risk and construction/schedule risk.  Design-build is an effective method for accelerating project construction and delivery; however, the acceleration of the schedule puts more pressure on the geotechnical design since “geotechnical investigation and design is usually the first design package that must be completed and geotechnical uncertainty is usually high at the time of DB contract award.”

Because geotechnical investigation and design is usually the first design package that must be completed and geotechnical uncertainty is usually high at the time of DB contract award, the design-builder’s geotechnical designers are under pressure to complete their work and enable foundation and other subsurface construction to commence. Successfully managing the geotechnical risk in a DB project is imperative to achieving the requisite level of quality in the finished product. The purpose of this synthesis is to benchmark the state of the practice regarding the use of geotechnical information in DB solicitation documents and contracts. The high level federal encouragement through EDC for state DOTs to accelerate project delivery by using DB elevates the need to manage geotechnical risk while expediting geotechnical design to a critical project success factor, and makes the results of this synthesis both timely and valuable.

As is the case with NCHRP synthesis reports, the authors conducted a literature review, conducted a survey of state DOTs and other agencies, and developed some conclusions that include effective practices for managing geotechnical risk.

The synthesis was based on a comprehensive literature review; a survey of U.S. DOTs, which received responses from 42 states (response rate = 84%); a content analysis of DB solicitation documents from 26 states; a content analysis of DB policy documents/guidelines from 12 state DOTs and 5 federal agencies; and interviews of 11 DB contractors whose markets encompass more than 30 states. The synthesis also furnishes three legal case studies (Colorado, Illinois, and Virginia) on cogent geotechnical issues and four geotechnical engineering case studies (Hawaii, Minnesota, Missouri, and Montana) that illustrate the methods transportation agencies use to deal with geotechnical issues on DB projects. Conclusions were drawn from the intersection of independent sources of information from the survey, case studies, and literature.

Some of the effective practices highlighted include the use of confidential Alternative Technical Concepts (ATC) during pre-bid, explicit differing site conditions (DSC) clauses that clearly quantify the design-build team’s risk and the threshold above which the DOT assumes the risk, the use of qualified personnel, and timely review schedules for geotechnical design items early in the project.

Our (DBA) experience in design-build has seen the range from effective practices to poor practices.  This report provides a great summary of many of the effective practices we have found to be beneficial and that help reduce conflicts and delays.  We can’t completely eliminate geotechnical risk, but it can be effectively and equitably managed.

Click on the link below to get a copy from NCHRP.

NCHRP Synthesis 429 – Geotechnical Information Practices in Design-Build Projects

St. Croix Bridge Construction Starts with Official Groundbreaking

St Croix Aerial Rendering

Earlier this week, officials from the Minnesota and Wisconsin departments of transportation (MnDOT and WisDOT) met for an official groundbreaking ceremony on the projected $629 million bridge and highway project that will connect Oak Park Heights, Minnesota, to St. Joseph, Wisconsin, just south of Stillwater, Minnesota, as highlighted in yesterday’s edition of The Minneapolis St. Paul Business Journal.  The new bridge will replace the 80-year-old Stillwater Lift Bridge and relieve traffic congestion in nearby Stillwater.

DBA has been retained by MnDOT as the lead geotechnical consultant and foundation designer for the extradosed river bridge.  Last summer, DBA aided MnDOT in the design and oversight of a load test program described in my blog post, “DBA Wraps Up Load Test Program and Proceeds with Design on St. Croix Bridge.”  Following final design, which took place over the fall and winter, construction of the foundations will begin next week with the installation of a technique shaft.  DBA will participate in construction as well, providing construction observation and review of the technique shaft and at least one shaft at each of the five production piers.  Edward Kraemer & Sons, Inc. of Plain, Wisconsin, has been selected as the general contractor for the foundation contract with sub-contractor Case Foundation Company of Chicago, Illinois, performing the drilling.  The extradosed bridge will feature five main river towers, each resting on two footings supported by a 4-shaft group of 8.5-foot drilled shafts, socketed 25-feet or more into sandstone bedrock.

I hope to have some more updates soon with some pictures following my upcoming site visits to observe the construction operations.  In the mean time, you can stay updated by visiting the MnDOT project page and watching the “action” live via the construction webcam.

New Pictures of Hastings Bridge Added to Our Picasa Web Album

Some new pictures of the Hastings bridge project in Hastings, Minnesota have been added to our Picasa Web Album: Hastings Bridge Construction.  The  pictures were taken by myself, David Graham, who has been in the area working on a load test program for a new bridge crossing the St. Croix River near Stillwater, Minnesota, and Griff Wigley, our blog coach who lives nearby in Northfield, Minnesota.  The pictures show some of the recently poured deck sections, the completed piers, and the main span arch construction.  Once completed, the main span arch will be moved onto barges, floated downstream, and lifted into place in one piece.  We have chronicled this interesting and successful project in several previous blog posts that can be found here.

TRB Report: Scour at Bridge Foundation on Rock

TRB has released a new synthesis report covering scour of bridge foundations.  Since this is an issue we are involved in on a lot of our big bridge projects, I felt it appropriate to share and help spread the word (Disclosure:  I have not read the report yet – but plan to soon).  ON large bridge projects we are often on the same team as Ayres Associates, Inc. , the firm of one of the three authors, Paul E. Clopper.

I found out about it from our friend Randy Post of Geoprac.net, so hat tip (h/t) to Randy:

TRB’s National Cooperative Highway Research Program (NCHRP) Report 717: Scour at Bridge Foundations on Rock presents a methodology for estimating the time rate of scour and the design scour depth for a bridge founded on rock. The report also includes design and construction guidelines for application of the methodology.

Check out Randy’s site – he does a great job keeping up with all sorts of things related to geo-engineering.

Go here to get the report (download PDF or purchase printed copy)