Tag Archives: featured

Hybrid Ground Improvement System for Liquefaction and Settlement Mitigation

Malcolm Drilling, Inc. and Dan Brown and Associates, LLC were the design-build team for a hybrid ground improvement system consisting of vibro-stone columns (VSC) and cutter soil mixing (CSM) panel grids to mitigate liquefaction and achieve target settlement performance criteria for a mixed-use development in Santa Cruz, California.

The development is being done by the Lincoln Property Company and consists of three separate 7-story buildings including 175 apartments and ground floor retail. The separate buildings provide public access from the street to the San Lorenzo River multiuse path. The project is an anchor for the City of Santa Cruz’s plan for revitalizing downtown with enhanced access to the river and increased density of affordable housing.

VSC were used on the interior of the site to densify granular soils while the CSM grids were designed to limit shear demand around the perimeter of the site where existing sensitive buildings and a USACE-controlled levee along the San Lorenzo River prevented the use of vibratory methods. The final project included 125 CSM panels for ground improvement and 558 VSC.

VSC probe and aggregate hopper supported by crane (foreground) with CFA piling rig on standby to predrill through refusal layers. San Lorenzo River levee visible in background
Cutter soil mix rig installing panel adjacent to existing structure at south site perimeter.

The hybrid ground improvement system supported a mat foundation beneath a single-level basement that spanned the entire site, atop which three individual seven-story mixed-use structures were constructed. The grade-level diaphragm resulted in combined seismic participation from the three structures which led to significant mat bearing pressures beneath shear walls and at the site perimeter.

In true design-build fashion, final geotechnical information was not available until after construction began and existing buildings on the site were demolished. This allowed access to install trial patterns of VSC with pre- and post-installation testing as well as additional exploratory CPT to identify the depth transition for the Purisma Formation bearing layer from about 60 ft in the northern portion of the site to about 20 ft in the southern portion of the site. VSC and CSM panel depths through the transition zone finalized while construction of the first production CSM panels was underway at the southern site edge.

Along with the Owner’s geotechnical engineer, Rockridge Geotechnical, DBA and Malcolm implemented multiple quality assurance and control measures. The CSM design and QA/QC program included a bench-scale study using soil samples from the geotechnical investigation, test panel installation using three different binder mixes with variable cement content to investigate soil mix compressive strengths, daily wet-grab sampling of production columns for strength testing, and coring of select columns for visual observation of mix continuity and sampling for strength testing of cured in-situ soil mix. Ground improvement through VSC was verified using post-installation CPT which were analyzed and evaluated on an individual basis against project performance criteria.

CSM core samples.
Pre- and post-VSC installation CPT profiles for liquefaction triggering.

The RiverRow project demonstrates the successful use of the design-build method to optimize site-specific ground improvement technologies to meet multiple project needs while safeguarding the interest of a wide variety of surrounding stakeholders, including sensitive structures and a USACE-controlled levee.

 

DFI Publishes Landslide Stabilization and Excavation Support Report

The Deep Foundations Institute (DFI) has just published a new report entitled Guidance for Factoring Deep Foundation Structural Resistance for Landslide Stabilization and Excavation Support“, Final Report, CPF-2017-LAND-1 .  The authors are our very own Ben Turner, Dan Ding, Erik Loehr, and Paul Axtell.

To borrow from the authors’ introduction:

This report provides guidance for factoring deep foundation passive structural resistance for use in two-dimensional limit-equilibrium SSA, and is intended to serve as a consensus document on this subject. The report is divided into two main sections. The first section provides an overview of the basic framework for incorporating deep foundation elements into global stability analyses, followed by a discussion of the different possible methods for factoring (or not) structural resistance at different stages of the analysis. From this discussion, various plausible combinations of methods for including or not including load and resistance factors are identified, including a simple example.  In the second section of the report, the various factoring methods are applied to three case studies in order to analyze the influence of factoring method on reliability. The report concludes with a summary of the recommended approach for incorporating deep foundation resistance in SSA, informed by the conclusions presented in the earlier sections.

The report can be downloaded for free from DFI at the Committee Project Fund page (https://www.dfi.org/cpf) . Scroll down and look for the Landslides and Slope Stabilization Committee.    The DFI committees fund a lot of projects that result in reports such as this that benefit our industry and the state of practice.

 

While the report is free, you can access so much more, including the DFI Journal, by becoming a member.

FHWA GEC 15 (Foundation Acceptance) Now Published

FHWA has published (posted the PDF!) of Geotechnical Engineering Circular 015 – Acceptance Procedures for Structural Foundations of Transportation Structures.   Work began on this in 2019 and was delayed due to COVID.   Andy Boeckmann, Dan Brown, Erik Loehr, and John Turner of DBA are the authors.  They worked hard with Silas Nichols and the team at FHWA to produce a great guidance document for accepting deep foundations supporting transportation structures.  Here is a bit from the Introduction in Chapter 1 that gives the “big picture” of this GEC:

Foundation acceptance is a crucial component of the design and construction process used to develop transportation infrastructure in the United States today. As considered in this circular, foundation acceptance refers to a process resulting in approval of payment
to the constructor for installation of a deep foundation element. The process should involve the following actions by an owner agency, or entity acting on its behalf:


      1. Establishment of measurable and achievable acceptance criteria that serve as assurance that a foundation element will fulfill all appropriate performance requirements, and


       2. Documented evaluation of the constructed foundation element to demonstrate that the established acceptance criteria have been satisfied.


Foundation acceptance is the culmination of quality assurance (QA) efforts that, when appropriately implemented, provides the owner agency with confidence that a foundation element will fulfill all appropriate performance requirements. In some instances, the
foundation acceptance process may include provisions for cost adjustments for foundation elements that do not strictly satisfy established acceptance criteria, but that are nevertheless judged to satisfy all appropriate performance requirements and which
the owner agency agrees to accept.

Topics covered in this GEC include the framework for accepting deep foundations (project delivery, participants, role of QA/QC,etc.) , roles of inspection and testing, and specific items of concern for drilled shafts, driven piles, micropiles, and continuous flight auger piles.  You can download the PDF at the link below or on the FHWA Geotechnical Publications page HERE.

 

Acceptance Procedures for Structural Foundations of Transportation Structures  (FHWA-HIF-22-024, Geotechnical Engineering Circular 015).  Loehr, E.L., Brown, D.A., Turner, J.P., and Boeckmann, A.Z. (2022).

NCHRP micropile study report published – NCHRP Report 989

At long last, the report for the NCHRP micropile study performed by Erik, Dan D., and Andy is published. The report, Reliability-Based Geotechnical Resistance Factors for Axially Loaded Micropiles, is the result of a considerable research effort that aims to rework AASHTO’s micropile design methods. Highlights of the research tasks are listed below.

 

  • Compile a database of micropile load tests and organize the database by micropile type and ground conditions.
  • Develop new presumptive and predictive models for micropile design. The presumptive models are based only on micropile type and ground condition; the predictive models further consider soil or rock strength.
  • Calibrate probabilistic resistance factors for micropile design based on presumptive and predictive models, and for designs based on site-specific load tests. If adopted, the resistance factors for designs based on load tests would be the first for AASHTO to be based on probabilistic calibration rather than fitting to historical practices.

 

The report can be downloaded for free from TRB’s website:

 

https://www.trb.org/Publications/Blurbs/182710.aspx

DBA Helps MnDOT Manage Risk for Dam Site

DBA recently completed construction observation of pile driving and earthwork for TH-84 across Norway Brook in Pine River, MN. The structure may look like a run of the mill bridge, but the project was replete with geotechnical challenges associated with constructing a new bridge at the toe of an active dam. (We use “run of the mill” with all due affection; there’s no such thing as a boring bridge to DBA.)

During the design phase, DBA designed an instrumentation system and used the resulting piezometric information to calibrate seepage models for the site. The calibrated models were used to analyze conditions during and after construction of the new bridge. DBA also developed an emergency action plan (EAP) that established items to observe during construction, defined levels of distress leading up to all potential failure mechanisms, and designated response actions associated with the distress levels. During construction, DBA was on-site to implement the EAP, coordinating with the contractor, Schroeder Construction, Inc., and MnDOT to quickly respond to any evidence of distress.

Throughout analysis, EAP development, and EAP implementation, DBA collaborated with the bridge designer, Parsons, and MnDOT to identify, explain, and manage the risks associated with this unique and challenging project. We are pleased to see live traffic crossing the dam in the picturesque Minnesota North Country!

Here is a link to a video shot by Dan Ding of DBA during construction:

Finally, some photos of the finished bridge:

 

PROJECT HIGHLIGHT: 30 CROSSING DESIGN-BUILD

DBA is pleased to be part of the Kiewit Massman Construction (KMC) design-build team delivering the first transportation design-build project in the State of Arkansas, 30 Crossing. The project will improve traffic patterns and capacity along a 3-mile urban corridor of Interstate 30 from the Interstate 630 interchange south of downtown Little Rock to the Interstate 40 interchange in North Little Rock. The project includes replacing the existing bridge over the Arkansas River with two bridges supporting 12 lanes of traffic. 30 Crossing is the capstone project of the Connecting Arkansas Program (CAP), one of the largest highway improvement programs ever undertaken by the Arkansas Department of Transportation (ArDOT).

Teamed with designers Burns & McDonnell and HDR, DBA is the lead geotechnical and foundation designer for the navigation unit and north approach unit of the new river bridges. The bridge foundations are 10-ft diameter drilled shafts socketed into shale bedrock. Due to the project’s proximity to the New Madrid Seismic zone, design of the bridges included seismic considerations for critical operational class structures. Geotechnical seismic analysis included liquefaction triggering and lateral spreading evaluation. DBA worked closely with the structural designers to consider kinematic loads induced by lateral spreading and the interaction of substructure and superstructure components during lateral spreading events. The north abutment includes a column supported MSE wall embankment (CSE). The CSE ground improvement is included to mitigate performance and stability issues associated with shallow, soft alluvial silts and liquefaction hazards associated with deeper, alluvial sands.

KMC is self-performing the drilled shaft construction and CSE installation. To date, all of the eastbound bridge drilled shafts have been installed in the river and for the north approach. The ground improvement elements as part of the CSE beneath the eastbound embankment has also been completed. Once the eastbound bridge is ready for traffic in 2022, both directions of Interstate 30 will be temporarily shifted to the eastbound bridge, and the existing bridge will be demolished to allow for construction of the westbound bridge in its place.

Senior Engineer, David Graham, P.E., is the geotechnical engineer of record and has been involved in all aspects of the project form pursuit phase to current construction activities with significant contribution and guidance of Senior Principal Engineer and COO, Paul Axtell, P.E., D.GE. Senior Engineer, Ben Turner, Ph.D., P.E., G.E., lead the geotechnical seismic design and analysis effort. Project Engineers, Dan Ding, Ph.D., P.E. and Nathan Glinski, P.E., continue to be heavily involved in construction support and observation.

Eastbound Pier 13

Westbound Pier 13 drilled shafts

Looking north from Pier 13 at Eastbound Piers 14 and 15

Photos Credit: DBA

TRB paper by andy boeckmann and erik loehr on Thermal requirements for drilled shafts

Andy Boeckmann, Ph.D., P.E. (DBA Senior Engineer) and Erik Loehr, Ph.D., P.E. (DBA Senior Principal Engineer) have published a paper on the topic of thermal testing of drilled shafts in the Transportation Research Board (TRB) journal Transportation Research Record.  Their co-author was  Zakaria El-tayash of Burns & McDonnell. 

As the drilled shaft diameters have increased in size over the years, designers and owners have had questions or concerns about the issues of temperature impacts to concrete durability similar to the issues with mass concrete placement for large structural elements.   Some transportation agencies have recently applied mass concrete provisions to drilled shafts, such as limits on maximum temperatures and maximum temperature differentials.  The temperatures commonly observed in large diameter drilled shafts have been observed to cause delayed ettringite formation (DEF) and thermal cracking in above-ground concrete elements.  This has led to the practice of applying to drilled shafts the control provisions that are based on dated practices for above-ground concrete. However, the reinforcement and confinement (embedded in soil and/or rock below grade) unique to drilled shafts should provide resistance to thermal cracking and possibly other effects of mass concrete temperatures.

Conceptual illustration of crack development in early age concrete with time from internal restraint. Adapted from Bamforth (2018) with permission from CIRIA

 

The paper reviews current requirements of several state DOTs  for addressing DEF and thermal cracking, then establishes a rational procedure for design of drilled shafts for durability requirements in response to hydration temperatures.  DEF is addressed through maximum temperature differential limitations while thermal cracking is addressed through calculations that explicitly consider the thermo-mechanical response of concrete for predicted temperatures.  The recommended procedure includes a detailed five step evaluation process.   Additional alternate steps for mitigation techniques and/or monitoring temperature are detailed as well.   The procedures allow for explicit account of project-specific characteristics, including ground conditions, concrete mix design characteristics, drilled shaft geometry, and the quantity of steel reinforcement.

 

Temperature differential between center and edge of shaft versus time from thermal model and from temperature measurements

 

The methodology was developed from guidance established by ACI and CIRIA and provides a rational means for designing drilled shafts for durability without imposing unnecessary constraints that may exacerbate challenges with effective construction of drilled shafts.  Results from application of the procedure indicate consideration of DEF and thermal cracking potential for drilled shafts is prudent, but provisions that have been applied to date are overly restrictive in many circumstances, particularly the commonly adopted 35 ?F maximum temperature differential provision.

You can get the paper from The Transportation Research Record at the link below.

Boeckmann, A.Z., El-tayash, Z., and Loehr, J.E. (2021). “Establishing and Satsifying Thermal Requirements for Drilled Shaft Concrete Based on Durability Considerations”, Transportation Research Record, March 2021.

Instrumentation at US 231 bridge and Slide

(Written by Andy Boeckmann – DBA)

After successful design and construction of the US 231 emergency slide repair in Lacey’s Spring, Alabama, DBA shifted gears to install a state-of-the-art monitoring system for the project. The monitoring system allows DBA and ALDOT to remotely detect any movement of the drilled shafts, changes in groundwater levels, and movement of the slope, itself.

The monitoring system includes ShapeAccelArray (SAAV) devices to measure displacement profiles with depth. SAAVs, which are manufactured by Measurand, consist of a chain of rigid segments, each 1.5-ft long and about 1-inch diameter. DBA installed 27 SAAV devices at US 231. Each of the 24 drilled shafts has one SAAV, which DBA installed in a 1-inch conduit welded to the drilled shaft reinforcement and emerging from the top of the grade beams connecting the shafts. The other three SAAVs are “free-field” SAAVs, installed in the soil between bridge bents. DBA worked with ALDOT’s drill crews to install the free-field SAAVs.

ALODT drill crew installing a free-field SAAV under the Northbound bridge.

 

Completed free-field and foundation instruments at Bent NB4.

 

DBA also worked with the ALDOT drill crews to install vibrating wire piezometer devices at six locations across the site. Each location includes two piezometers, one in the soil and one just below the top of rock. The piezometers were installed using the fully-grouted method. The piezometers measure pore pressure, which DBA uses to interpret groundwater conditions at the site.

 

Datalogger atop a vibrating wire piezometer.

 

All of the instruments are connected wirelessly to two central hubs that collect the data. The hubs are solar powered.  One of the hubs is equipped with a cellular modem that facilitates remote collection of the data.  RST Instruments manufactures the monitoring equipment as well as the vibrating wire piezometers.

Housing for SAAV devices installed in drilled shafts.

 

R-star hub and solar panel mounted to SB Bent 6.

 

Inside of data collection hub.

 

Results of the monitoring program indicate the foundation system is performing as designed. The US 231 structure has passed its first wet season with flying colors. Despite several periods of heavy rain that resulted in localized slope movement, the drilled shafts have shown only very small movement, typically less than 0.05 inch. The movement shown in the shafts indicates they are resisting loading from the slope movement, but with plenty of reserve capacity. The monitoring system has successfully captured realistic results from all instruments, including the drilled shaft and free-field SAAVs and piezometers.

Piezometer data shows strong correlation between rainfall and increases in groundwater levels.
Example of SAAV drilled shaft displacement. Shaft displacements are very small, typically less than the stated accuracy of the SAAV devices.

The monitoring system is more than just bells and whistles: it is an integral part of DBA’s design philosophy for the US 231 project. DBA engineers were able to implement the innovative strategy of drilled shafts through an active landslide because we knew performance of the foundation system would be actively monitored. This strategy represents a modern take on the observational method, which has represented best geotechnical engineering practice since the profession originated. DBA will also use results of the monitoring program to inform future designs, consistent with our commitment to using state of the art to improve the state of practice.

To read more in detail about the design and construction of the bridge foundations, we published an article i nthe April 2021 issue of Foundation Drilling Magazine:

Thompson, W.R. and Dapp, S.D. (2021). “Innovative Landslide Solution”, Foundation Drilling, Vol XLII, No. 3April 2021, pp51-62.

US 231 Emergency Slide Repair – Laceys Spring, Alabama

DBA had the great fortune to be working with the Alabama Department of Transportation (ALDOT) on a very interesting bridge project in Lacey’s Spring, Alabama just south of Huntsville, Alabama.  On February 12 and 13, 2020 a large landslide occurred on SR-53 (US-231) at milepost 301.7 in Morgan County approximately 1.7 miles south of the Laceys Spring Community.  The slide completely severed the 4-lane divided highway which is a major commuting route between Huntsville and several communities south of the city.  Many of the workers at the U.S. Army Redstone Arsenal, NASA Marshall Space Flight Center, and the contractors and vendors that support these two major installations live in the communities impacted by the closure of the highway.  Detours were established on existing state and county roads, but these added 30 to 60 minutes to commute times, depending on time of day.  ALDOT was under significant pressure from the impacted communities to quickly solve the problem and reopen the road.

ALDOT drill rigs performing exploratory drilling (DBA)

 

ALDOT drilling crews were immediately mobilized to the site to begin drilling exploratory borings and install slope inclinometer casings for monitoring slide movements.  The Department of Civil Engineering at Auburn University was engaged to perform geophysical testing in conjunction with an existing research project for ALDOT.  Geotechnical engineering firm TTL also assisted with field investigation efforts. 

DBA and ALDOT immediately began evaluating several alternate concepts for stabilizing the slide and reopening the road during the soil and rock exploratory drilling.  The design team looked at several retaining wall options, a complete rebuild of the roadway, and bridges.  ALDOT selected a solution that removed most of the existing roadway embankments (built in 1947 and 1970) to reduce loading on the slope and then spanning the slide area with bridges built on the existing road alignments, with the bridges designed to withstand future movements of the slope.  Excavation was begun by Reed Contracting before bridge design was complete in order for the rough grading to be done before the bridge contractor mobilized.

The bridges are two-lane structures, one Northbound and one Southbound, each about 947 ft in length.  The superstructure is AASHTO BT-72 concrete girders and a concrete deck.  There are seven spans in each bridge each about 135ft long.  The grading work was begun while the bridge was still being designed to accelerate the schedule and shorten the time the road would be closed.

The foundations for each pier are a pair of 9.5ft diameter, permanently cased drilled shafts with 9ft diameter rock sockets.  The sockets are 14ft long into the limestone and shale bedrock.  The limestone uniaxial compressive strengths range from 10,820 psi to 28,100 psi. 

After much design and analysis in a highly compressed schedule, a bridge contract was let for bid in early May 2020, less than 3 months after the slide occurred.  Brasfield & Gorrie was the successful bidder and awarded a $15 million contract that has incentives for finishing early, and disincentives for finishing late. 

 

ALDOT UAV flight June 16, 2020

ALDOT UAV flight July 07, 2020

ALDOT UAV flight July 23, 2020

ALDOT UAV flight July 28, 2020

ALDOT UAV Flight Aug 08, 2020

ALDOT UAV Flight Sep 2, 2020

ALDOT UAV Flight Sep 15, 2020

 

Excavating first shaft on the site (DBA)

 

A.H. Beck (Beck) was the drilled shaft contractor, drilling each shaft, placing reinforcement, and placing concrete.   The 9.5ft diameter permanent casing is 5/8 inch wall thickness spiral weld 60ksi steel fabricated by Nucor in Birmingham, Alabama.  The shafts are reinforced with a 1.5inch wall thickness, 8ft diameter, 60ksi steel pipe. These pipes were rolled and welded by Favor Steel in Birmingham, Alabama before being trucked to the site.  The steel plate was manufactured by SSAB in Axis, Alabama near Mobile.  So, the structural steel pipes were completely Alabama-made and the steel travel almost the length of the state!

8ft diameter x 1.5in wall steel pipe for shaft reinforcement (DBA)

 

Inner structural pipe (1.5in) and outer casing (5/8in) (DBA)

 

The pair of shafts for each pier is connected by a reinforced concrete grade beam 10ft wide by 7ft high by 46ft long. To connect the shafts to the grade beam, a 14ft long reinforcement cage is placed in each shaft, embedded 8ft into the shaft with 6ft embedded in the grade beam. The cage consists of 28 No.18 Grade 75 bars.

Grade beam at NB Bent 7 with column steel (DBA)

 

Completed shaft with reinforcing cage to embed in grade beam (DBA)

 

The project includes a robust instrumentation plan with ShapeArray inclinometers installed in each shaft and in the slope, supplemented by traditional inclinometers in the slope and vibrating piezometers to monitor groundwater levels.  DBA and ALDOT will monitor the bridge and slope, intending to be able to measure displacement and calculate strain and loads in the shafts should the slope move again in the future.

Foundations were completed a few days ahead of schedule at the end of July 2020.  The deadline to have the bridge open to traffic was early December, 2020, but Brasfield and Gorrie had an aggressive plan to complete the project early and earn the bonus for early completion.   The bridge was open to traffic September 28, 2021 to much rejoicing among the commuters and others that use this route.   Volkert was the CE&I Consultant on the project for ALDOT, providing construction management and inspection services for the project, ensuring all requirements were met to build the bridges.

To read more in detail about the design and construction of the bridge foundations, we published an article i nthe April 2021 issue of Foundation Drilling Magazine:

Thompson, W.R. and Dapp, S.D. (2021). “Innovative Landslide Solution”, Foundation Drilling, Vol XLII, No. 3April 2021, pp51-62.

Click HERE for some of the photos DBA team members have taken during construction.

To see aerial views from ALDOT’s UAV flight taken on July 10, 2020, click HERE.

 

 

DBA Project Highlight: MoDOT I-44 Project Bridge Rebuild

I-44 Construction Aerial View; video courtesy of Emery Sapp & Sons

DBA has partnered with bridge designer Parsons and prime contractor Emery Sapp & Sons on a design/build project in Southwest Missouri being administered by MoDOT.  Design is complete and the project is in construction phase.  The project involves replacing 13 bridges and rehabilitating another six bridges along a 30-mile stretch of I-44 between Sarcoxie and Halltown.  The $36 million project is progressing nicely with construction beginning in 2019 and on schedule to be completed by December 15, 2021. To get a birds-eye view of some of the work, check out the video at the top of the post (from Emery Sapp & Sons)

Although smaller bridges than DBA typically works on, challenging subsurface conditions and unique structure types have made things interesting with respect to foundation design and construction.  Foundation types for various structures include driven H-piles installed with high-strain dynamic testing, drilled shafts with rock sockets in various rock formations, and spread footings bearing on near surface bedrock where applicable.  Pinnacle bedrock surface and karstic foundation conditions are prevalent in the area and this project is no exception.  Foundation design had to anticipate the complex subsurface conditions and consider constructability throughout the entire design process.

More information on the project can be found at MoDOT’s project page:  https://www.modot.org/i-44-project-bridge-rebuild .  Below are some photos taken by DBA staff while on site.

Photo Credit: DBA