Category Archives: Load Testing

FHWA GEC 10 Update for 2018 Released!

UPDATE!  Posting of the PDF to the FHWA Resource page has been delayed while the formatting issues noted below are worked out. 

CLICK HERE for a Final DRAFT for use until FINAL document is posted by FHWA.

The long anticipated update to FHWA GEC 10 Drilled Shafts: Construction Procedures and Design Methods has finally been released by FHWA, The same team that authored the major update in 2010 that shifted design from ASD to LRFD also completed this update: Dr. Dan Brown, P.E., D.GE, and Dr. John Turner, P.E., D.GE of DBA, Dr. Erik Loehr, P.E. of the University of Missouri and DBA, and Mr. Ray Castelli, P.E. of WSP.

This version is an update of the 2010 publication.  A complete list of changes made since 2010 is in the opening chapter.  Some of the revisions include:

  • streamlining materials covered in other GEC publications (for example, site investigation and lateral loading) to focus on aspects particular or unique to drilled shafts;
  • updates to reflect the evolution of construction procedures, tooling, materials, drilling fluids, and concrete placement;
  • updated design equations for axial loading, particularly for earthquake loading;
  • updated group design to reflect recent changes to AASHTO design guidelines;
  • updates on integrity testing (including use of Thermal Integrity Profiling, or TIP); and,
  • an outline for a process for assessment and acceptance of drilled shafts based on inspection records and integrity tests.

You can download the new PDF here.  The PDF posted is “preliminary” with some minor formatting and other items to be cleaned up by the fall.

Pre-Bid Load Testing for the Mobile River Bridge and Bayway Public Private Partnership (P3) Project

DBA has been fortunate to be involved as a consult to Alabama Department of Transportation (ALDOT) for the  Mobile River Bridge and Bayway Project.  This project represents Alabama’s largest ever investment for a single infrastructure project.  The project includes a cable stayed bridge over the Mobile River and seven miles of bridge over Mobile Bay.  Bridge foundations therefore represent a major component of the estimated $2 billion project cost.  DBA serves as a foundation consultant under subcontract to Thompson Engineering, Inc..  Thompson is one of the ALDOT Advisory Team partners, the other partners being HDR and Mott MacDonald.

With the tremendous volume of foundations required for the project, the DBA/Thompson team worked with ALDOT’s Geotechnical Division to develop a pre-bid load test program to help reduce some of the risks that would face both ALDOT and prospective concessionaires.  Performing a deep foundation load test program during the procurement phase of a Public Private Partnership (P3) project can help the prospective concessionaires better define foundation design parameters and reduce uncertainties and risks related to constructability of the foundations.  The reduced risk leads to reduced costs by allowing the concessionaire to develop a more efficient design while minimizing contingency costs and potential delays related to foundation constructability or performance.

The load test program was designed to include the most likely foundation types that the prospective teams might use.  Several types of driven piles were installed and tested, including typical square and cylinder concrete piles used on the Alabama coast plus steel H-piles and an open-ended steel pipe pile.

All driven piles were subject to dynamic testing with a Pile Driving Analyzer during driving.  Restrikes with dynamic testing were conducted on all driven piles to evaluate potential strength gain with time.  Jetting techniques were specified for some piles to evaluate this installation technique which could potentially be used during construction.

Traditional axial static load tests were performed on steel HP14x89 and 18in Precast Prestressed Concrete (PPC) square piles.  Rapid (Statnamic) axial load tests were performed on 36 in PCC square piles, 54in PCC cylinder, and 60in steel open-end pipe piles.

A 72in diameter drilled shaft foundation was also installed and tested.  Axial load testing was done using a bi-directional load cell (AFT A-Cell).  Lateral load testing was done using the Statnamic device.

 

Here are some videos of the Statnamic testing, with slow motion action!

 

Foundation contractors that are part of a concessionaire team pursuing the project were allowed to bid the load test program.  Jordan Pile Driving was the successful bidder for the $3.7 million test project.  AFT provided the testing services for the project – dynamic, static, Statnamic, and A-Cell.

A summary of the results can be found in a presentation made to ALDOT at the 62nd Annual Alabama Transportation Conference on February 13, 2019.   (Click HERE to get the presentation). Publication of the results is anticipated to be made in the DFI Journal in the future.

Dan Brown awarded A Golden Beaver

(One more catch-up on “older” news!)

In January of 2018, Dan was awarded the coveted Golden Beaver  Award in Engineering by The Beavers.  The award was given at the 63rd Annual Golden Beavers Award Dinner on January 19, 2018 in Los Angeles.

The Beavers is a social and honorary organization organized and managed by members of the heavy construction industry.

The purpose of the Beavers is to promote goodwill, friendliness and consideration within the heavy engineering construction industry; to give recognition to those men and women who have demonstrated particular skill, responsibility and integrity; and to encourage and support entry of promising young individuals into heavy engineering construction.

The Beavers hold two major events annually. The Beavers Awards Dinner is held in mid-January, where individuals are recognized with a Golden Beaver Award for their achievements and contributions to the heavy construction industry in the categories of Management, Supervision, Engineering and Service & Supply.

Dan was honored with the award for his expertise and contributions to the deep foundations industry and its impacts on the heavy construction industry.

 

Goethals Bridge – Up and out of the ground

(Post and photos provided by John Turner, Ph.D., P.E., D.GE of DBA.)

DBA has had the privilege to be the geotechnical/foundation engineer for the Goethals Bridge Replacement (GBR)Project, a design-build project for the Port Authority of New York & New Jersey (PANYNJ). The project will replace the existing Goethals Bridge that was built in the 1920s and carries I-278 over the Arthur Kill River between Elizabeth, New Jersey and Staten Island, New York.

Construction of drilled shafts continues as the superstructure begins to emerge over the skyline between Elizabeth, NJ and Staten Island, NY.  The new bridge will be a dual-span 1,983-ft long cable-stayed bridge with approach spans of over 2,500 ft on each side.  The bridge is supported on over 200 drilled shaft foundations ranging in diameter from 4.5 ft to 10 ft and socketed into Passaic Formation siltstone.

Goethals April 2016

The GBR is a Public-Private Partnership (P3) that represents a major milestone for the PANYNJ in its distinguished history of bridge building in the greater New York City metropolitan area.  The existing Goethals Bridge along with the Outerbridge Crossing and the Bayonne Bridge comprise the three Port Authority bridges connecting Staten Island with New Jersey.  The Goethals Bridge and the Outerbridge Crossing are cantilever truss structures and both opened on the same day in 1928. They were designed by J.A.L. Waddell under the supervision of the eminent engineer Othmar H. Ammann (1879-1965), who was the designer of many other iconic bridges in the NY City area including the Bayonne Bridge (1931), the George Washington Bridge (1931), and the Verrazano Narrows Bridge (1964).  The designer of record for the replacement Goethals Bridge is Parsons Corporation, which is the successor firm of Robinson & Steinman, whose principal David B. Steinman was also a notable NY area bridge designer and a contemporary and rival of O.H. Ammann.

Each main pylon tower of the GBR is supported on a group of six 9-ft diameter drilled shafts and each anchor pier is supported by two 10-ft diameter shafts.  Approach piers are two-column bents with each column supported on a rock-socketed drilled shaft.

Goethals shaft 1

DBA is the foundation design engineer of record and this project provides an example of how rock-socketed drilled shafts can provide a reliable and cost-effective means of supporting a major bridge by taking advantage of the high resistances that can be achieved.  Key factors involved in taking advantage of rock sockets for this project were:  (1) load testing to demonstrate high axial resistances (>30 ksf side resistance and  >300 ksf base resistance), (2) utilization of all relevant construction QC/QA tools to ensure that rock sockets are constructed in a manner that is consistent with construction of the load-tested shafts that provide the basis of the design, (3) close collaboration between all members of the design-build team, and (4) adequate subsurface characterization, especially a thorough characterization of rock characteristics and their effect on socket resistances. Load testing for this project demonstrates that side and base resistances can be used in combination to design rock socketed shafts for axial loading.  This approach avoids the use of unnecessarily deep sockets, thereby minimizing the associated construction risks and costs.

Goethals rendering

The GBR project developer is NYNJ Link Developer, LLC and construction is being performed by a joint venture of Kiewit-Weeks-Massman (KWM).  Parsons is the lead designer.  A construction web-cam and additional information on the GBR can be found at the Port Authority’s website: http://www.panynj.gov/bridges-tunnels/goethals-bridge-replacement.html

NCHRP Synthesis 478 – Design and Load Testing of Large Diameter Open-Ended Driven Piles

nchrp_syn_478_Design and Load Testing of Large Diameter Open-Ended Driven Piles_2015

The Transportation Research Board (TRB) has released a synthesis report prepared by Dan and Robert on large diameter piles: NCHRP Synthesis 478, Design and Load Testing of Large Diameter Open-Ended Driven Piles.  The report is a summary of the state of practice with regard to Large Diameter Open-Ended Piles (LDOEPs) in the transportation industry.  We conducted a survey of state DOTs as well as interviews with private practitioners to summarize current practices as well as recommend best practices with regard to the selection, design, installation, and testing of LDOEPs.   Several state DOTs are using LDOEPs more regularly where large foundation loads may exist and/or the piles are subject to significant unsupported length due to scour, liquefaction, or very weak surficial soils. Marine construction conditions also favor the use of these piles, particularly where pile bents might be employed to eliminate footings.

You can download a PDF of the report or purchase a hard copy at the link below.

Brown, D.A. and Thompson, W.R. (2015). NCHRP Synthesis 478, Design and Load Testing of Large Diameter Open-Ended Driven Piles, Transportation Research Board, National Academies, Washington, D.C.

DBA Engineers Perform “Extreme” Geologic Investigation

DBA engineers prepare to go over the edge of the 200-ft tall west wall of the Rouchleau mine pit with the load test site in the background. From left to right: David Graham, Nathan Glinski, Ryan Turner, and Paul Axtell
DBA engineers prepare to go over the edge of the 200-ft tall west wall of the Rouchleau mine pit with the load test site in the background. From left to right: David Graham, Nathan Glinski, and Paul Axtell (far right).

DBA is currently working with structural designer Parsons to design what will be Minnesota’s tallest bridge.  The bridge will span the currently inactive Rouchleau open pit iron ore mine near Virginia, Minnesota. MnDOT is moving the alignment of the existing Hwy 53 to make way for future mining in the area.  DBA is the lead geotechnical designer on the project in addition to being contracted as MnDOT’s load test expert for the ongoing design phase load test program.

As part of our site investigation to gather information on rock fall and the site geology, five DBA engineers (John Turner, Paul Axtell, Tim Siegel, Nathan Glinksi, and David Graham) got up close and personal with the site by rappelling off the near vertical cut faces on either side of the Rouchleau pit! Traversing the over 200-ft tall cut faces of the nearly 2-billion year Biwabik Formation rock formation by rope and harness, we collected valuable geologic data.  We also took some great pictures like the ones posted to our Google Photos account.  In addition to the still pictures, we took some videos of a few rock fall tests, which are on our YouTube channel.

If you would like to know more about this interesting project on Minnesota’s Iron Range, you can check out our project summary sheet, visit MnDOT’s project page, or stay tuned to this blog for more updates.  There is also an online article about the project that was recently published by Civil Engineering Magazine.

Foundations for the New Sacremento Entertainment and Sports Center

 

kingsarenanew_670

Contributed by Rob Saunders, P.E. – DBA

DBA has been working on an exciting new project currently under construction in downtown Sacramento, California: the new Sacramento Arena, known as the Entertainment and Sports Center (ESC).  The ESC will be a multi-use, publicly owned indoor arena. The Sacramento Kings will be the primary tenant and the arena is expected to host other indoor sports and music concerts, as well.  Once completed, the ESC will replace Sleep Train Arena as the home of the Kings.  According to Kings Chairman Vivek Ranadive, the 17,500-seat arena will be “one of the most iconic structures on the planet … It’s going to put Sacramento on the world map.”

turner

Turner Construction is the head of development for the new arena. Malcolm Drilling Company was awarded the contract to design and construct the foundation system.  DBA worked closely with Malcolm to design Omega piles (a drilled and grouted displacement pile) to serve as the foundations for the new arena.  The site presented unique design challenges, including liquefiable soil conditions and existing deep foundations from the demolisLogo_Malcolm_Stacked_Bluehed portion of the Downtown Plaza.

DBA’s design incorporates 18” and 24”  Omega piles.  An extensive site-specific load test program was performed to determine the axial resistances of the piles.  Eight test piles were instrumented with strain gauges to measure the load distribution in the piles.  Supplemental cone penetration testing was performed following load testing to better correlate the load test results with the subsurface conditions.

The piles were designed to resist ground motions from seismic events using site-specific ground curvature data developed by Pacific Engineering and Analysis. The piles were designed to resist the curvature at the anticipated pile section with only a single center reinforcing bar, eliminating the need to extend the entire cage to the bottom of the pile. This detail in the design is very important to ease the pile installation for the site conditions.

The final design incorporates a total of 952 piles to support the arena structure (346 18” dia. Piles and 606 24” dia. piles). The new arena is estimated to cost $477 million, with $255 million of that being funded by the City of Sacramento. The rest of the arena ($222 million) will be funded by the Sacramento Kings. Construction began October 29, 2014 and is planned to be completed by October of 2016.

The groundbreaking for the project was featured by the Sacremento Bee on October 29, 2014 (link).

Kansas City Load Test Photos Added

BPU Load Test

Last spring, DBA conducted a construction phase load test program for a U.S. Army Corps of Engineers floodwall improvement project  along the Missouri River in Kansas City, Kansas.  Located on property owned and maintained by the Kansas City Board of Public Utilities (BPU), the BPU floodwall was slated for structural improvements including a series of buttresses founded on 24-in drilled shafts.  As part of the project contract a load test program performed under the direction of a qualified P.E. and D.GE was required.  General contractor L.G. Barcus & Sons, Inc., secured our Paul Axtell, P.E., D.GE as the qualified load test expert.  DBA teamed up with load testing subcontractor Applied Foundation Testing, Inc., to perform the static load tests.

The load test program requirements included three test shafts, a statically loaded axial test shaft, a statically loaded lateral test shaft, and a combined statically loaded axial and lateral test shaft.  The required combined lateral and axial test shaft provided some unique challenges with respect to applying the loads and collecting data.  As can be seen in the picture above, the axial load was applied using dead weights.

We have added selected pictures from this unique project to our web albums, which can be viewed here.

DBA Engineers Coauthor Cover Story of Latest DFI Magazine

https://danbrownandassociates.com/wp-content/uploads/2013/08/DFI-Cover-July-Aug-2013_small.jpg

Cover Image of the Hastings Mississippi River Arch Bridge

The featured article in the July/August 2013 issue of Deep Foundations, the magazine of the Deep Foundations Institute, is coauthored by Dan, Paul, and Rich Lamb, P.E., of the Minnesota Department of Transportation (MnDOT).  The article summarizes how load testing has been used successfully as part of the foundation design process by DBA and MnDOT on five major bridge projects along the Mississippi and St. Croix Rivers during the last 10 years and the lessons learned from these successive projects.   The featured bridge projects include two major design-build projects, the emergency replacement of the I-35W St. Anthony Falls Bridge (2007) and the Hastings Mississippi River Arch Bridge (2011).  The other traditional design-bid-build projects include the I-494 Wakota Mississippi River Bridge, the U.S. Hwy 52 Lafayette Mississippi River Bridge, and the St Croix River Bridge.  As is often the case, each of these projects presented unique geological and hydrogeological challenges to foundation design – despite the projects all being within 30 miles of each other – including thick layers of highly organic compressible soils overlying bedrock, layers of cobbles and boulders, artesian groundwater conditions, and bedrock ranging from weak weathered sandstone to very hard dolostone.  These varying conditions resulted in the use and testing of a variety of foundations.  Load testing “with a purpose” has proven to be an integral part of the design and construction process on these projects, as the load tests were not simply for verification of a design but provided valuable information used to optimize the designs and provide quality assurance of the construction practices.

Please read the full article here or in a copy of Deep Foundations, a bi-monthly magazine published by the Deep Foundations Institute.   DFI is an international technical association of firms and individuals involved in the deep foundations and related industry.  More information about DFI and how to become a member can be found at www.dfi.org.

Also see our Projects Page for more about some of these projects and our other major projects.

Huey P. Long Bridge Expansion–Completion in June 2013

130320_HPLAerials49web

The Huey P. Long Bridge in New Orleans, Louisiana will be officially completed in June this year, according to the LADOTD. A recent article in the Times-Picayune on-line announced another ramp opening last weekend, bringing the $1.2 billion project one step closer to completion.  DBA was brought onto the project by the contractor team to consult on the design, load testing, and construction of the 9-foot diameter, 184-foot long base grouted drilled shafts.

Check out our previous DBA posts on the HPL.

This article from the Times-Picayune in 2009 gives a great graphical description of how the bridge was widened.

You can learn all about the history of the bridge and the project at the project page of the Louisiana TIMED Program.  The project page has a lot of good links, including photos from the project.

Photo Credit: Louisiana TIMED project photo album