This report provides guidance for factoring deep foundation passive structural resistance for use in two-dimensional limit-equilibrium SSA, and is intended to serve as a consensus document on this subject. The report is divided into two main sections. The first section provides an overview of the basic framework for incorporating deep foundation elements into global stability analyses, followed by a discussion of the different possible methods for factoring (or not) structural resistance at different stages of the analysis. From this discussion, various plausible combinations of methods for including or not including load and resistance factors are identified, including a simple example. In the second section of the report, the various factoring methods are applied to three case studies in order to analyze the influence of factoring method on reliability. The report concludes with a summary of the recommended approach for incorporating deep foundation resistance in SSA, informed by the conclusions presented in the earlier sections.
The report can be downloaded for free from DFI at the Committee Project Fund page (https://www.dfi.org/cpf) . Scroll down and look for the Landslides and Slope Stabilization Committee. The DFI committees fund a lot of projects that result in reports such as this that benefit our industry and the state of practice.
While the report is free, you can access so much more, including the DFI Journal, by becoming a member.
At long last, the report for the NCHRP micropile study performed by Erik, Dan D., and Andy is published. The report, Reliability-Based Geotechnical Resistance Factors for Axially Loaded Micropiles, is the result of a considerable research effort that aims to rework AASHTO’s micropile design methods. Highlights of the research tasks are listed below.
Compile a database of micropile load tests and organize the database by micropile type and ground conditions.
Develop new presumptive and predictive models for micropile design. The presumptive models are based only on micropile type and ground condition; the predictive models further consider soil or rock strength.
Calibrate probabilistic resistance factors for micropile design based on presumptive and predictive models, and for designs based on site-specific load tests. If adopted, the resistance factors for designs based on load tests would be the first for AASHTO to be based on probabilistic calibration rather than fitting to historical practices.
The report can be downloaded for free from TRB’s website:
Aaron Leopold, P.E. joined the team this May with 8 years of geotechnical engineering experience. He received a BS and MS in Civil Engineering from the University of Illinois at Urbana-Champaign. His previous work at Shannon & Wilson mainly focused on the design and construction of deep foundations and retention systems. Aaron was often on the road, observing complex geotechnical projects throughout the Midwest and Western United States consisting of drilled shafts, ground anchors, micropiles, augercast piles, and other deep foundation and earth retention systems. He has supported numerous landslide stabilization projects utilizing his knowledge of 2D and 3D numerical modeling and has worked on large design-build projects from the pursuit through construction in the Rockies. Aaron is also heavily involved within ASCE and other professional organizations in Colorado and will be based in Denver.
We are starting 2022 with two new faces at DBA – a big welcome to Adam Blazejowski, EI and Frank Russell, EI. Both will be based in our office in Knoxville, Tennessee, but will soon be like the rest of us at DBA – traveling to interesting project sites all over the U.S. They will be working on many of the deep foundation and earth retention projects that are our staples.
Adam is from London, Canada where he completed his B.S. degree in civil engineering at Western University in 2020. He came to the United States to complete an M.S. in geotechnical engineering at Virginia Tech, where he performed research on the cyclic strength of sands. Adam is also interested in risk-based design and reliability in geotechnical engineering.
Frank is from Hickory Flat, Georgia and graduated from Auburn University with his B.S. in 2019 and his M.S. in 2021 in civil engineering. During graduate school, he was a recipient of the Long Family Endowed Civil Engineering Graduate Study Scholarship from the ADSC – The International Association of Foundation Drilling. His graduate school research evaluated the methods used in pile load testing across Alabama Department of Transportation projects.
DBA recently completed construction observation of pile driving and earthwork for TH-84 across Norway Brook in Pine River, MN. The structure may look like a run of the mill bridge, but the project was replete with geotechnical challenges associated with constructing a new bridge at the toe of an active dam. (We use “run of the mill” with all due affection; there’s no such thing as a boring bridge to DBA.)
During the design phase, DBA designed an instrumentation system and used the resulting piezometric information to calibrate seepage models for the site. The calibrated models were used to analyze conditions during and after construction of the new bridge. DBA also developed an emergency action plan (EAP) that established items to observe during construction, defined levels of distress leading up to all potential failure mechanisms, and designated response actions associated with the distress levels. During construction, DBA was on-site to implement the EAP, coordinating with the contractor, Schroeder Construction, Inc., and MnDOT to quickly respond to any evidence of distress.
Throughout analysis, EAP development, and EAP implementation, DBA collaborated with the bridge designer, Parsons, and MnDOT to identify, explain, and manage the risks associated with this unique and challenging project. We are pleased to see live traffic crossing the dam in the picturesque Minnesota North Country!
Here is a link to a video shot by Dan Ding of DBA during construction:
It’s been a while since we have updated everyone on some of the various publications we have added to our website, so I wanted to provide a few links to some of the newer additions to our Publications tab. One magazine that members of DBA contribute to fairly regularly is Geostrata Magazine. The Geostrata Magazine is a bi-monthly publication of the Geo-Institute. You can join the Geo-Institute and gain access to the magazine by following this link: https://www.geoinstitute.org/publications/geostrata. Dr. Dan Brown published an article in the May-June 2020 edition about lessons learned from failures during pile installation with regards to driving stresses. In the January-February 2021 edition, Dr. Erik Loehr contributed an article about recognizing the inherent value in site characterization. Links for the articles are below.
An organization that we actively publish papers with is the Deep Foundations Institute (DFI). We have added papers from the last three years for the DFI Annual Conference as well as the The Journal of the Deep Foundations Institute. Links to the papers are below. To join DFI or learn more , click the DFI logo located in the left sidebar.
Dr. Dan Brown has also recently submitted an article to Pile Driver Magazine, which is a bi-monthly publication of the Pile Driving Contractors Association (PDCA). To learn more about the PDCA or become a member, click on logo on the left sidebar. The magazine is free to access and can be found by clicking here while the link for Dr. Brown’s article can be found below.
We have also added a few older papers that David Graham and Paul Axtell have published. One, a case history for a micropile project, was for the International Society of Micropiles. The other was for the 34th annual International Bridge Conference. The links for the papers are found below.
Finally, we have also updated our About Us tab to reflect the change in leadership announced back in April of 2020 and provide an updated view of our current staff here at DBA. The names of each individual are links to their respective resume.
DBA had the great fortune to be working with the Alabama Department of Transportation (ALDOT) on a very interesting bridge project in Lacey’s Spring, Alabama just south of Huntsville, Alabama. On February 12 and 13, 2020 a large landslide occurred on SR-53 (US-231) at milepost 301.7 in Morgan County approximately 1.7 miles south of the Laceys Spring Community. The slide completely severed the 4-lane divided highway which is a major commuting route between Huntsville and several communities south of the city. Many of the workers at the U.S. Army Redstone Arsenal, NASA Marshall Space Flight Center, and the contractors and vendors that support these two major installations live in the communities impacted by the closure of the highway. Detours were established on existing state and county roads, but these added 30 to 60 minutes to commute times, depending on time of day. ALDOT was under significant pressure from the impacted communities to quickly solve the problem and reopen the road.
ALDOT drilling crews were immediately mobilized to the site to begin drilling exploratory borings and install slope inclinometer casings for monitoring slide movements. The Department of Civil Engineering at Auburn University was engaged to perform geophysical testing in conjunction with an existing research project for ALDOT. Geotechnical engineering firm TTL also assisted with field investigation efforts.
DBA and ALDOT immediately began evaluating several alternate concepts for stabilizing the slide and reopening the road during the soil and rock exploratory drilling. The design team looked at several retaining wall options, a complete rebuild of the roadway, and bridges. ALDOT selected a solution that removed most of the existing roadway embankments (built in 1947 and 1970) to reduce loading on the slope and then spanning the slide area with bridges built on the existing road alignments, with the bridges designed to withstand future movements of the slope. Excavation was begun by Reed Contracting before bridge design was complete in order for the rough grading to be done before the bridge contractor mobilized.
The bridges are two-lane structures, one Northbound and one Southbound, each about 947 ft in length. The superstructure is AASHTO BT-72 concrete girders and a concrete deck. There are seven spans in each bridge each about 135ft long. The grading work was begun while the bridge was still being designed to accelerate the schedule and shorten the time the road would be closed.
The foundations for each pier are a pair of 9.5ft diameter, permanently cased drilled shafts with 9ft diameter rock sockets. The sockets are 14ft long into the limestone and shale bedrock. The limestone uniaxial compressive strengths range from 10,820 psi to 28,100 psi.
After much design and analysis in a highly compressed schedule, a bridge contract was let for bid in early May 2020, less than 3 months after the slide occurred. Brasfield & Gorrie was the successful bidder and awarded a $15 million contract that has incentives for finishing early, and disincentives for finishing late.
A.H. Beck (Beck) was the drilled shaft contractor, drilling each shaft, placing reinforcement, and placing concrete. The 9.5ft diameter permanent casing is 5/8 inch wall thickness spiral weld 60ksi steel fabricated by Nucor in Birmingham, Alabama. The shafts are reinforced with a 1.5inch wall thickness, 8ft diameter, 60ksi steel pipe. These pipes were rolled and welded by Favor Steel in Birmingham, Alabama before being trucked to the site. The steel plate was manufactured by SSAB in Axis, Alabama near Mobile. So, the structural steel pipes were completely Alabama-made and the steel travel almost the length of the state!
8ft diameter x 1.5in wall steel pipe for shaft reinforcement (DBA)
Inner structural pipe (1.5in) and outer casing (5/8in) (DBA)
The pair of shafts for each pier is connected by a reinforced concrete grade beam 10ft wide by 7ft high by 46ft long. To connect the shafts to the grade beam, a 14ft long reinforcement cage is placed in each shaft, embedded 8ft into the shaft with 6ft embedded in the grade beam. The cage consists of 28 No.18 Grade 75 bars.
Grade beam at NB Bent 7 with column steel (DBA)
Completed shaft with reinforcing cage to embed in grade beam (DBA)
The project includes a robust instrumentation plan with ShapeArray inclinometers installed in each shaft and in the slope, supplemented by traditional inclinometers in the slope and vibrating piezometers to monitor groundwater levels. DBA and ALDOT will monitor the bridge and slope, intending to be able to measure displacement and calculate strain and loads in the shafts should the slope move again in the future.
Foundations were completed a few days ahead of schedule at the end of July 2020. The deadline to have the bridge open to traffic was early December, 2020, but Brasfield and Gorrie had an aggressive plan to complete the project early and earn the bonus for early completion. The bridge was open to traffic September 28, 2021 to much rejoicing among the commuters and others that use this route. Volkert was the CE&I Consultant on the project for ALDOT, providing construction management and inspection services for the project, ensuring all requirements were met to build the bridges.
To read more in detail about the design and construction of the bridge foundations, we published an article i nthe April 2021 issue of Foundation Drilling Magazine:
The Transportation Research Board (TRB) has released a synthesis report prepared by Brent L. Rosenblad and Andrew Z. Boeckmann (Andy is now with DBA) on geophysical methods for transportation projects: NCHRP Synthesis 547, Advancements in Use of Geophysical Methods for Transportation Projects. The report is an updated summary of the state of practice with regard to geophysical methods in the transportation industry and includes a matrix of geophysical methods and applications. They conducted a survey of state DOTs and selected frequent users of geophysics to analyze “the common use methods and applications, challenges, and lessons learned.”
You can download a PDF of the report or purchase a hard copy at the link below.
I-44 Construction Aerial View; video courtesy of Emery Sapp & Sons
DBA has partnered with bridge designer Parsons and prime contractor Emery Sapp & Sons on a design/build project in Southwest Missouri being administered by MoDOT. Design is complete and the project is in construction phase. The project involves replacing 13 bridges and rehabilitating another six bridges along a 30-mile stretch of I-44 between Sarcoxie and Halltown. The $36 million project is progressing nicely with construction beginning in 2019 and on schedule to be completed by December 15, 2021. To get a birds-eye view of some of the work, check out the video at the top of the post (from Emery Sapp & Sons)
Although smaller bridges than DBA typically works on, challenging subsurface conditions and unique structure types have made things interesting with respect to foundation design and construction. Foundation types for various structures include driven H-piles installed with high-strain dynamic testing, drilled shafts with rock sockets in various rock formations, and spread footings bearing on near surface bedrock where applicable. Pinnacle bedrock surface and karstic foundation conditions are prevalent in the area and this project is no exception. Foundation design had to anticipate the complex subsurface conditions and consider constructability throughout the entire design process.
DBA is excited to announce recent transitions within the company.
Dan Brown, Ph.D., P.E., D.GE, is turning over the reigns of leadership to the next generation in the firm and stepping down as President. While stepping back from day-to-day management of the company, Dan will remain fully involved in technical aspects and client service in the role of Chief Engineer where he will continue to focus on developing practical solutions to complex and challenging foundation issues.
Three Senior Principal Engineers will assume the roles of the officers of DBA. Tim Siegel, P.E., G.E., D.GE has been promoted to Chief Executive Officer. Paul Axtell, P.E., D.GE has been promoted to Chief Operating Officer. Robert Thompson, P.E., D.GE has been promoted to Chief Financial Officer. Tim, Paul, and Robert will provide the management and leadership for the continued growth of DBA and for DBA to provide value to its clients and continue to be a key contributor to the practice of geotechnical engineering.
Tim Siegel, CEO
Paul Axtell, COO
Robert Thompson, CFO
Specialists in Deep Foundation Design, Construction, and Testing and Slope Stability Problems