Tag Archives: Geotechnical Engineering

Happy Karl Terzaghi’s Birthday 2024

Happy Karl Terzaghi’s Birthday!  Yes, today is the 141st anniversary of the birth of the man considered The Father of Modern Soil Mechanics!

It has been a couple of years since I have posted a Happy Terzaghi’s Birthday note.  Life – both inside and outside work – sometimes has a way of derailing us from established routines, patterns, and our “usual things”.  I told myself this year would be different, so here I am!  Some of you have been on my list for a few years, some of you may be new.  You are always welcome to ask me to drop you, or to forward to others!

When thinking about what to write, I looked through several things on my bookshelf and ended up reading the Preface to “Soil Mechanics in Engineering Practice”, Terzaghi and Peck (1948).  I am sure I read this years ago when a friend gave me this book as a gift, but today it jumped out for me to use here.  Professors Terzaghi and Peck are “setting up” how they organized the book, with the “heart of the book” being the part that deals with the art of getting results in practice.  This paragraph sets it up beautifully, starting with a lament that the increase in research has started to digress the profession away from the practical towards the few areas that can be precisely measured or understood (and this was in 1948!).

“Unfortunately, the research activities in soil mechanics had one undesirable psychological effect.  They diverted the attention of many investigators and teachers from the manifold limitations imposed by nature on the application of mathematics to problems in earthwork engineering.  As a consequence, more and more emphasis has been placed on refinements in sampling and testing and on those very few problems that can be solved with accuracy.  Yet, accurate solutions can be obtained only if the soil strata are practically homogenous and continuous in horizontal directions.  Furthermore, since the investigations leading to accurate solutions involve highly specialized methods of sampling and testing, they are justified only in exceptional cases.  On the overwhelming majority of jobs no more than an approximate forecast is needed, and if such a forecast cannot be made by simple means it cannot be made at all.  If it is not possible to make an approximate forecast, the behavior of the soil must be observed during construction, and the design may subsequently have to be modified in accordance with the findings.  These facts cannot be ignored without defying the purpose of soil mechanics. “

How true at times this is still today!  Our high-tech world sometimes leads us into the trap that the answer is better the more precise we can be in our capture, measurement, analysis, and calculations.  However, simple is many times still as precise as we need and we must be able to know when that is the case, and how to convey it to others.  We also need to know how to back-check our complex models with a simplified hand calculation or “eye ball” judgment.

So, raise that mug of coffee, cup of tea, can of Red Bull, or favorite after-hours beverage (when it is after hours!) to the timeless words from two of the “founding fathers” of geotechnical engineering and practice.  Have a great Karl Terzaghi’s Birthday!

DFI Publishes Landslide Stabilization and Excavation Support Report

The Deep Foundations Institute (DFI) has just published a new report entitled Guidance for Factoring Deep Foundation Structural Resistance for Landslide Stabilization and Excavation Support“, Final Report, CPF-2017-LAND-1 .  The authors are our very own Ben Turner, Dan Ding, Erik Loehr, and Paul Axtell.

To borrow from the authors’ introduction:

This report provides guidance for factoring deep foundation passive structural resistance for use in two-dimensional limit-equilibrium SSA, and is intended to serve as a consensus document on this subject. The report is divided into two main sections. The first section provides an overview of the basic framework for incorporating deep foundation elements into global stability analyses, followed by a discussion of the different possible methods for factoring (or not) structural resistance at different stages of the analysis. From this discussion, various plausible combinations of methods for including or not including load and resistance factors are identified, including a simple example.  In the second section of the report, the various factoring methods are applied to three case studies in order to analyze the influence of factoring method on reliability. The report concludes with a summary of the recommended approach for incorporating deep foundation resistance in SSA, informed by the conclusions presented in the earlier sections.

The report can be downloaded for free from DFI at the Committee Project Fund page (https://www.dfi.org/cpf) . Scroll down and look for the Landslides and Slope Stabilization Committee.    The DFI committees fund a lot of projects that result in reports such as this that benefit our industry and the state of practice.

 

While the report is free, you can access so much more, including the DFI Journal, by becoming a member.

NCHRP micropile study report published – NCHRP Report 989

At long last, the report for the NCHRP micropile study performed by Erik, Dan D., and Andy is published. The report, Reliability-Based Geotechnical Resistance Factors for Axially Loaded Micropiles, is the result of a considerable research effort that aims to rework AASHTO’s micropile design methods. Highlights of the research tasks are listed below.

 

  • Compile a database of micropile load tests and organize the database by micropile type and ground conditions.
  • Develop new presumptive and predictive models for micropile design. The presumptive models are based only on micropile type and ground condition; the predictive models further consider soil or rock strength.
  • Calibrate probabilistic resistance factors for micropile design based on presumptive and predictive models, and for designs based on site-specific load tests. If adopted, the resistance factors for designs based on load tests would be the first for AASHTO to be based on probabilistic calibration rather than fitting to historical practices.

 

The report can be downloaded for free from TRB’s website:

 

https://www.trb.org/Publications/Blurbs/182710.aspx

Welcome Aaron Leopold, P.E.!

Aaron Leopold, P.E. joined the team this May with 8 years of geotechnical engineering experience.  He received a BS and MS in Civil Engineering from the University of Illinois at Urbana-Champaign.  His previous work at Shannon & Wilson mainly focused on the design and construction of deep foundations and retention systems.  Aaron was often on the road, observing complex geotechnical projects throughout the Midwest and Western United States consisting of drilled shafts, ground anchors, micropiles, augercast piles, and other deep foundation and earth retention systems.  He has supported numerous landslide stabilization projects utilizing his knowledge of 2D and 3D numerical modeling and has worked on large design-build projects from the pursuit through construction in the Rockies.  Aaron is also heavily involved within ASCE and other professional organizations in Colorado and will be based in Denver.

Welcome Adam blazejowski and frank russell!

We are starting 2022 with two new faces at DBA – a big welcome to Adam Blazejowski, EI and Frank Russell, EI.  Both will be based in our office in Knoxville, Tennessee, but will soon be like the rest of us at DBA – traveling to interesting project sites all over the U.S.  They will be working on many of the deep foundation and earth retention projects that are our staples.

Adam is  from London, Canada where he completed his B.S. degree in civil engineering at Western University in 2020.  He came to the United States to complete an M.S. in geotechnical engineering at Virginia Tech, where he performed research on the cyclic strength of sands.  Adam is also interested in risk-based design and reliability in geotechnical engineering.

Frank  is from Hickory Flat, Georgia and graduated from Auburn University with his B.S. in 2019 and his M.S. in 2021 in civil engineering.  During graduate school, he was a recipient of the Long Family Endowed Civil Engineering Graduate Study Scholarship from the ADSC – The International Association of Foundation Drilling. His graduate school research evaluated the methods used in pile load testing across Alabama Department of Transportation projects. 

DBA Helps MnDOT Manage Risk for Dam Site

DBA recently completed construction observation of pile driving and earthwork for TH-84 across Norway Brook in Pine River, MN. The structure may look like a run of the mill bridge, but the project was replete with geotechnical challenges associated with constructing a new bridge at the toe of an active dam. (We use “run of the mill” with all due affection; there’s no such thing as a boring bridge to DBA.)

During the design phase, DBA designed an instrumentation system and used the resulting piezometric information to calibrate seepage models for the site. The calibrated models were used to analyze conditions during and after construction of the new bridge. DBA also developed an emergency action plan (EAP) that established items to observe during construction, defined levels of distress leading up to all potential failure mechanisms, and designated response actions associated with the distress levels. During construction, DBA was on-site to implement the EAP, coordinating with the contractor, Schroeder Construction, Inc., and MnDOT to quickly respond to any evidence of distress.

Throughout analysis, EAP development, and EAP implementation, DBA collaborated with the bridge designer, Parsons, and MnDOT to identify, explain, and manage the risks associated with this unique and challenging project. We are pleased to see live traffic crossing the dam in the picturesque Minnesota North Country!

Here is a link to a video shot by Dan Ding of DBA during construction:

Finally, some photos of the finished bridge:

 

NEW PUBLICATIONS ADDED AND UPDATES TO THE WEBSITE

It’s been a while since we have updated everyone on some of the various publications we have added to our website, so I wanted to provide a few links to some of the newer additions to our Publications tab.  One magazine that members of DBA contribute to fairly regularly is Geostrata Magazine.  The Geostrata Magazine is a bi-monthly publication of the Geo-Institute.  You can join the Geo-Institute and gain access to the magazine by following this link:  https://www.geoinstitute.org/publications/geostrata.  Dr. Dan Brown published an article in the May-June 2020 edition about lessons learned from failures during pile installation with regards to driving stresses.  In the January-February 2021 edition, Dr. Erik Loehr contributed an article about recognizing the inherent value in site characterization.  Links for the articles are below.

Brown, D., E. (2020). “Learning from Pile Driving Failures,” Geostrata, May-June 2020.

Loehr, J. E. (2021). “Recognizing Value in Site Characterization – How Cool Would That Be?”, Geostrata, January-February 2021.

Speaking of the Geo Institute, Dan Ding and Erik Loehr recently co-authored a paper in the Journal of Geotechnical and Geoenvironmental Engineering (see link below).

Ding, D., Loehr, J. E. (2019). “Variability and Bias in Undrained Shear Strength from Different Sampling and Testing Methods,”Journal of Geotechnical and Geoenvironmental Engineering Volume 145, Issue 10, October 2019.

An organization that we actively publish papers with is the Deep Foundations Institute (DFI).  We have added papers from the last three years for the DFI Annual Conference as well as the The Journal of the Deep Foundations Institute.  Links to the papers are below.  To join DFI or learn more , click the DFI logo located in the left sidebar.

T.C. Siegel, T. J. Day, B. Turner & P. Faust (2019) “Measured end resistance of CFA and drilled displacement piles in San Francisco Area alluvial clay”,DFI Journal – The Journal of the Deep Foundations Institute, 12:3, pp 186-189.

Graham, D.S. and Axtell, P.J. (2019). “Case History: Comparison of CSL Results to Physical Observations,” Proceedings: Deep Foundations Institute 44th Annual Conference, Chicago, IL, USA, pp 420-427.

Axtell, P.J., Graham, D.S., and Jackson, J. (2018). “Drilled Shaft Difficulties and a Micropile Solution,” Proceedings: Deep Foundations Institute 43rd Annual Conference, Anaheim, CA, USA, pp 93-103.

Graham, D.S., Axtell, P.J., and Iverson, N. W. (2017). “Case History: Large Diameter Micropiles for the Highway 53 Relocation Project,” Proceedings: Deep Foundations Institute 42nd Annual Conference, New Orleans, LA, USA.

Dr. Dan Brown has also recently submitted an article to Pile Driver Magazine, which is a bi-monthly publication of the Pile Driving Contractors Association (PDCA).  To learn more about the PDCA or become a member, click on logo on the left sidebar. The magazine is free to access and can be found by clicking here while the link for Dr. Brown’s article can be found below.

Brown, D. (2020). “A comparison of factors affecting the static axial resistance of drilled and driven piles”, Pile Driver Issue 4 2020, Volume 17 No. 4, pp 60-78.

We have also added a few older papers that David Graham and Paul Axtell have published.  One, a case history for a micropile project, was for the International Society of Micropiles.  The other was for the 34th annual International Bridge Conference.  The links for  the papers are found below.

Axtell, P.J., Graham, D.S., and Bailey, J. D. (2017). “Statnamic Load Testing on a 406mm (16 in) Diameter Micropile,” International Society of Micropiles, Chicago, IL, USA.

Graham, D.S., Hasbrouck, G.T., Axtell, P.J., and Turner, J.P. (2017). “Reducing Longitudinal Demands on Tall Bridge Piers with an Anchored Abutment”, Proceedings of the 34th International Bridge Conference, 2017, National Harbor, MD, USA, pp 668-672.

Finally, we have also updated our About Us tab to reflect the change in leadership announced back in April of 2020 and provide an updated view of our current staff here at DBA.  The names of each individual are links to their respective resume. 

US 231 Emergency Slide Repair – Laceys Spring, Alabama

DBA had the great fortune to be working with the Alabama Department of Transportation (ALDOT) on a very interesting bridge project in Lacey’s Spring, Alabama just south of Huntsville, Alabama.  On February 12 and 13, 2020 a large landslide occurred on SR-53 (US-231) at milepost 301.7 in Morgan County approximately 1.7 miles south of the Laceys Spring Community.  The slide completely severed the 4-lane divided highway which is a major commuting route between Huntsville and several communities south of the city.  Many of the workers at the U.S. Army Redstone Arsenal, NASA Marshall Space Flight Center, and the contractors and vendors that support these two major installations live in the communities impacted by the closure of the highway.  Detours were established on existing state and county roads, but these added 30 to 60 minutes to commute times, depending on time of day.  ALDOT was under significant pressure from the impacted communities to quickly solve the problem and reopen the road.

ALDOT drill rigs performing exploratory drilling (DBA)

 

ALDOT drilling crews were immediately mobilized to the site to begin drilling exploratory borings and install slope inclinometer casings for monitoring slide movements.  The Department of Civil Engineering at Auburn University was engaged to perform geophysical testing in conjunction with an existing research project for ALDOT.  Geotechnical engineering firm TTL also assisted with field investigation efforts. 

DBA and ALDOT immediately began evaluating several alternate concepts for stabilizing the slide and reopening the road during the soil and rock exploratory drilling.  The design team looked at several retaining wall options, a complete rebuild of the roadway, and bridges.  ALDOT selected a solution that removed most of the existing roadway embankments (built in 1947 and 1970) to reduce loading on the slope and then spanning the slide area with bridges built on the existing road alignments, with the bridges designed to withstand future movements of the slope.  Excavation was begun by Reed Contracting before bridge design was complete in order for the rough grading to be done before the bridge contractor mobilized.

The bridges are two-lane structures, one Northbound and one Southbound, each about 947 ft in length.  The superstructure is AASHTO BT-72 concrete girders and a concrete deck.  There are seven spans in each bridge each about 135ft long.  The grading work was begun while the bridge was still being designed to accelerate the schedule and shorten the time the road would be closed.

The foundations for each pier are a pair of 9.5ft diameter, permanently cased drilled shafts with 9ft diameter rock sockets.  The sockets are 14ft long into the limestone and shale bedrock.  The limestone uniaxial compressive strengths range from 10,820 psi to 28,100 psi. 

After much design and analysis in a highly compressed schedule, a bridge contract was let for bid in early May 2020, less than 3 months after the slide occurred.  Brasfield & Gorrie was the successful bidder and awarded a $15 million contract that has incentives for finishing early, and disincentives for finishing late. 

 

ALDOT UAV flight June 16, 2020

ALDOT UAV flight July 07, 2020

ALDOT UAV flight July 23, 2020

ALDOT UAV flight July 28, 2020

ALDOT UAV Flight Aug 08, 2020

ALDOT UAV Flight Sep 2, 2020

ALDOT UAV Flight Sep 15, 2020

 

Excavating first shaft on the site (DBA)

 

A.H. Beck (Beck) was the drilled shaft contractor, drilling each shaft, placing reinforcement, and placing concrete.   The 9.5ft diameter permanent casing is 5/8 inch wall thickness spiral weld 60ksi steel fabricated by Nucor in Birmingham, Alabama.  The shafts are reinforced with a 1.5inch wall thickness, 8ft diameter, 60ksi steel pipe. These pipes were rolled and welded by Favor Steel in Birmingham, Alabama before being trucked to the site.  The steel plate was manufactured by SSAB in Axis, Alabama near Mobile.  So, the structural steel pipes were completely Alabama-made and the steel travel almost the length of the state!

8ft diameter x 1.5in wall steel pipe for shaft reinforcement (DBA)

 

Inner structural pipe (1.5in) and outer casing (5/8in) (DBA)

 

The pair of shafts for each pier is connected by a reinforced concrete grade beam 10ft wide by 7ft high by 46ft long. To connect the shafts to the grade beam, a 14ft long reinforcement cage is placed in each shaft, embedded 8ft into the shaft with 6ft embedded in the grade beam. The cage consists of 28 No.18 Grade 75 bars.

Grade beam at NB Bent 7 with column steel (DBA)

 

Completed shaft with reinforcing cage to embed in grade beam (DBA)

 

The project includes a robust instrumentation plan with ShapeArray inclinometers installed in each shaft and in the slope, supplemented by traditional inclinometers in the slope and vibrating piezometers to monitor groundwater levels.  DBA and ALDOT will monitor the bridge and slope, intending to be able to measure displacement and calculate strain and loads in the shafts should the slope move again in the future.

Foundations were completed a few days ahead of schedule at the end of July 2020.  The deadline to have the bridge open to traffic was early December, 2020, but Brasfield and Gorrie had an aggressive plan to complete the project early and earn the bonus for early completion.   The bridge was open to traffic September 28, 2021 to much rejoicing among the commuters and others that use this route.   Volkert was the CE&I Consultant on the project for ALDOT, providing construction management and inspection services for the project, ensuring all requirements were met to build the bridges.

To read more in detail about the design and construction of the bridge foundations, we published an article i nthe April 2021 issue of Foundation Drilling Magazine:

Thompson, W.R. and Dapp, S.D. (2021). “Innovative Landslide Solution”, Foundation Drilling, Vol XLII, No. 3April 2021, pp51-62.

Click HERE for some of the photos DBA team members have taken during construction.

To see aerial views from ALDOT’s UAV flight taken on July 10, 2020, click HERE.

 

 

NCHRP Synthesis 547 – Advancements in Use of Geophysical Methods for Transportation Projects

The Transportation Research Board (TRB) has released a synthesis report prepared by Brent L. Rosenblad and Andrew Z. Boeckmann (Andy is now with DBA) on geophysical methods for transportation projects: NCHRP Synthesis 547, Advancements in Use of Geophysical Methods for Transportation Projects.  The report is an updated summary of the state of practice with regard to geophysical methods in the transportation industry and includes a matrix of geophysical methods and applications. They conducted a survey of state DOTs and selected frequent users of geophysics to analyze “the common use methods and applications, challenges, and lessons learned.”

You can download a PDF of the report or purchase a hard copy at the link below.

Rosenblad, B.L. and Boeckmann, A.Z. (2020). NCHRP Synthesis 547, Advancements in Use of Geophysical Methods for Transportation Projects, Transportation Research Board, National Academies, Washington, D.C.

DBA Project Highlight: MoDOT I-44 Project Bridge Rebuild

I-44 Construction Aerial View; video courtesy of Emery Sapp & Sons

DBA has partnered with bridge designer Parsons and prime contractor Emery Sapp & Sons on a design/build project in Southwest Missouri being administered by MoDOT.  Design is complete and the project is in construction phase.  The project involves replacing 13 bridges and rehabilitating another six bridges along a 30-mile stretch of I-44 between Sarcoxie and Halltown.  The $36 million project is progressing nicely with construction beginning in 2019 and on schedule to be completed by December 15, 2021. To get a birds-eye view of some of the work, check out the video at the top of the post (from Emery Sapp & Sons)

Although smaller bridges than DBA typically works on, challenging subsurface conditions and unique structure types have made things interesting with respect to foundation design and construction.  Foundation types for various structures include driven H-piles installed with high-strain dynamic testing, drilled shafts with rock sockets in various rock formations, and spread footings bearing on near surface bedrock where applicable.  Pinnacle bedrock surface and karstic foundation conditions are prevalent in the area and this project is no exception.  Foundation design had to anticipate the complex subsurface conditions and consider constructability throughout the entire design process.

More information on the project can be found at MoDOT’s project page:  https://www.modot.org/i-44-project-bridge-rebuild .  Below are some photos taken by DBA staff while on site.

Photo Credit: DBA