Tag Archives: Lateral Load Test

Pre-Bid Load Testing for the Mobile River Bridge and Bayway Public Private Partnership (P3) Project

DBA has been fortunate to be involved as a consult to Alabama Department of Transportation (ALDOT) for the  Mobile River Bridge and Bayway Project.  This project represents Alabama’s largest ever investment for a single infrastructure project.  The project includes a cable stayed bridge over the Mobile River and seven miles of bridge over Mobile Bay.  Bridge foundations therefore represent a major component of the estimated $2 billion project cost.  DBA serves as a foundation consultant under subcontract to Thompson Engineering, Inc..  Thompson is one of the ALDOT Advisory Team partners, the other partners being HDR and Mott MacDonald.

With the tremendous volume of foundations required for the project, the DBA/Thompson team worked with ALDOT’s Geotechnical Division to develop a pre-bid load test program to help reduce some of the risks that would face both ALDOT and prospective concessionaires.  Performing a deep foundation load test program during the procurement phase of a Public Private Partnership (P3) project can help the prospective concessionaires better define foundation design parameters and reduce uncertainties and risks related to constructability of the foundations.  The reduced risk leads to reduced costs by allowing the concessionaire to develop a more efficient design while minimizing contingency costs and potential delays related to foundation constructability or performance.

The load test program was designed to include the most likely foundation types that the prospective teams might use.  Several types of driven piles were installed and tested, including typical square and cylinder concrete piles used on the Alabama coast plus steel H-piles and an open-ended steel pipe pile.

All driven piles were subject to dynamic testing with a Pile Driving Analyzer during driving.  Restrikes with dynamic testing were conducted on all driven piles to evaluate potential strength gain with time.  Jetting techniques were specified for some piles to evaluate this installation technique which could potentially be used during construction.

Traditional axial static load tests were performed on steel HP14x89 and 18in Precast Prestressed Concrete (PPC) square piles.  Rapid (Statnamic) axial load tests were performed on 36 in PCC square piles, 54in PCC cylinder, and 60in steel open-end pipe piles.

A 72in diameter drilled shaft foundation was also installed and tested.  Axial load testing was done using a bi-directional load cell (AFT A-Cell).  Lateral load testing was done using the Statnamic device.

 

Here are some videos of the Statnamic testing, with slow motion action!

 

Foundation contractors that are part of a concessionaire team pursuing the project were allowed to bid the load test program.  Jordan Pile Driving was the successful bidder for the $3.7 million test project.  AFT provided the testing services for the project – dynamic, static, Statnamic, and A-Cell.

A summary of the results can be found in a presentation made to ALDOT at the 62nd Annual Alabama Transportation Conference on February 13, 2019.   (Click HERE to get the presentation). Publication of the results is anticipated to be made in the DFI Journal in the future.

Kansas City Load Test Photos Added

BPU Load Test

Last spring, DBA conducted a construction phase load test program for a U.S. Army Corps of Engineers floodwall improvement project  along the Missouri River in Kansas City, Kansas.  Located on property owned and maintained by the Kansas City Board of Public Utilities (BPU), the BPU floodwall was slated for structural improvements including a series of buttresses founded on 24-in drilled shafts.  As part of the project contract a load test program performed under the direction of a qualified P.E. and D.GE was required.  General contractor L.G. Barcus & Sons, Inc., secured our Paul Axtell, P.E., D.GE as the qualified load test expert.  DBA teamed up with load testing subcontractor Applied Foundation Testing, Inc., to perform the static load tests.

The load test program requirements included three test shafts, a statically loaded axial test shaft, a statically loaded lateral test shaft, and a combined statically loaded axial and lateral test shaft.  The required combined lateral and axial test shaft provided some unique challenges with respect to applying the loads and collecting data.  As can be seen in the picture above, the axial load was applied using dead weights.

We have added selected pictures from this unique project to our web albums, which can be viewed here.

NCHRP Report 461–Static and Dynamic Lateral Loading of Pile Groups

nchrp_rpt_461-Static and Dynamic Loading of Pile Groups

Here is a blast from the past on pile groups: NCHRP Report 461 – Static and Dynamic Lateral Loading of Pile Groups.  I had a request for this report recently, so I found it and figured we needed to post the links to it.  Dan was the lead researcher on this report during his time at Auburn University, and had an all-star line up that included Dr. Mike O’Neill and Dr. Mike McVay, two of the heavy hitters in foundation engineering.  The report introduction gives a good summary of the contents:

A key concern of bridge engineers is the design and performance of pile group foundations under lateral loading events,
such as ship or ice impacts and earthquakes. This report documents a research program in which the following were developed:
(1) a numerical model to simulate static and dynamic lateral loading of pile groups, including structural and soil hysteresis and energy dissipation through radiation; (2) an analytical soil model for nonlinear unit soil response against piles (i.e., p-y curves) for dynamic loading and simple factors (i.e., p-multipliers) to permit their use in modeling groups of piles; (3) experimental data obtained through static and dynamic testing of large-scale pile groups in various soil profiles; and (4) preliminary recommendations for expressions for p-y curves, damping factors, and p-multipliers for analysis of laterally loaded pile groups for design purposes. The report also describes experimental equipment for performing site-specific, static, and dynamic lateral load tests on pile groups.

Several full-scale field tests were conducted on pile groups of 6 to 12 piles, both bored and driven, in relatively soft cohesive and cohesionless soils. All of the groups were loaded laterally statically to relatively large deflections, and groups of instrumented pipe piles were also loaded dynamically to large deflections, equivalent to deflections that might be suffered in major ship impact and seismic events. Dynamic loading was provided by a series of impulses of increasing magnitude using a horizontally mounted Statnamic device.

For a relatively short (50 pages) report, there is a lot of information packed into it gleaned from a lot of full-scale field work.

DBA Wraps Up Load Test Program and Proceeds with Design on St. Croix Bridge

Project rendering courtesy of HDR 

Lateral Statnamic test, picture by David Graham of DBA, click here for a YouTube video

DBA has been selected by MnDOT as a geotechnical and load testing consultant for the design phase load test program and foundation design of a new bridge crossing the the St. Croix River near Oak Park Heights and Stillwater, Minnesota. The new bridge will carry State Highway 36 across the St. Croix River between Minnesota and Wisconsin. Currently, Highway 36 is carried on an 80-year old two-lane vertical lift bridge in downtown Stillwater.  The new bridge will divert the heavy through traffic away from the historic downtown center and reduce travel time for commuters.  The iconic lift bridge will be converted to a pedestrian and bicycle only structure.

Work began this summer on the load test program which consisted of one 8-foot test shaft, two 24-inch driven steel pipe piles, and two 42-inch driven steel pipe piles, all installed in the St. Croix River along the alignment of the new bridge.  Local contractor Carl Bolander & Sons Co. was selected as the general contractor for the load testing program.  Bolander self-performed the installation of the test piles and sub-contracted the construction of the test shaft to Case Foundation Company, of Chicago, Illinois.  Axial load testing of the test shaft was performed by Loadtest, Inc., of Gainesville, Florida, using Osterberg Cells (O-cells).  Dynamic testing of the driven piles using the pile driving analyzer (PDA) was performed by local geotechnical consultant Braun Intertec.  Axial testing of the driven piles and lateral testing of the shaft and one of each size pile was performed using the Statnamic Device by Applied Foundation Testing, Inc. (AFT), of Jacksonville, Florida.  DBA provided pre-test recommendations, assisted MnDOT in construction oversight, provided analysis and review of the test results, and made design recommendations based on the test results.

Following the successful load test program, DBA is working with MnDOT’s structural design consultants for the project, HDR, Inc. and Buckland & Taylor Ltd.  to optimize the bridge design.  Already, the design team has been able to lengthen the bridge spans and eliminate a river pier as a result of the load test results, as was recently reported by Minnesota Public Radio (MPR).  Also, because the total number of drilled shafts required to support the main pier towers has been reduced, construction on the foundations will been moved up to 2013 rather than the original estimated start date in 2014, also reported by MPR.

For more information, please see:

The MnDOT Project Page

The DBA Project Summary Sheet

Two New Technical Manuals From DFI

The Deep Foundations Institute (DFI) has announced the publication of two new deep foundation reference manuals.   Excerpts from the announcement for both manuals are below.  Both manuals are available for order from DFI by clicking the links in the titles.

Guideline for Interpretation of Nondestructive Integrity Testing of Augered Cast-in-Place and Drilled Displacement Piles
DFI Augered Cast-In-Place Pile Committee (2011-2012) Chaired by Michael Moran
Tracy Brettmann, Principal Author; Bernard Hertlein, Matthew Meyer, Bria Whitmire, Co-Authors

(Image from DFI)

This guideline provides practical guidance for the interpretation of nondestructive testing (NDT) of the integrity of augered cast-in-place (ACIP) and drilled displacement (DD) piles.  …  This guideline supplements DFI’s two primary publications on ACIP piles: Augered Cast-in-Place Pile Manual (2003) and the Inspector’s Guide for Augered Cast-in-Place Piles (2010). This guideline was developed to provide 1) more detailed explanations of the various test methods available, 2) guidance on interpretation of the results, and 3) some typical examples of the data and interpretation.

Seismic and Lateral Load Design and Testing Guidelines
DFI Seismic and Lateral Loads Committee (2011-2012)
Chaired by Mark Petersen and Zia Zafir (2003-2009)
Robert Kruger, Guideline Editor

 

(DBA Photo)

This guidance document is intended to assist geotechnical engineers, pile designers, and contractors in analysis, design, and testing of piles and drilled shafts for lateral loads. … … This document discusses the background of different analytical and testing procedures and presents the recommended methods for analysis, design and testing of piles for lateral loads.

Hyperbolic P-Y Model from Lateral Load Tests in Loess Soils

Another paper featured in the December 2011 issue of the DFI Journal was authored by Steve and Dan, along with Dr. Bob Parsons at the University of Kansas.

Dapp, S.D., Brown, D.A., and Parsons, R.L. (2011). “Hyperbolic P-Y Model for Static and Cyclic Lateral Loading Derived from Full-Scale Lateral Load Tesing in Cemented Loess Soils”, DFI Journal Volume 5, Number 2, December 2011, Deep Foundations Institute, pp35-43.

The paper describes a program of lateral load tests on six drilled shafts installed in a loess deposit at a site in Wyandotte County, Kansas.  The lateral load test data, along with site characterization data that included CPT data, were used to develop a hyperbolic model to generate p-y curves for use in lateral load analyses in cemented soils.  The model should be applicable to many “c-phi” soils (soils with both a cohesion intercept and a friction angle, such as cemented soils).  Degradation of the static soil model to account for cyclic loading effects is included in the new model.

This paper was originally published in the DFI Journal, Vol. 5 No. 2, December 2011, the bi-annual Journal of the Deep Foundations Institute.  DFI is an international technical association of firms and individuals involved in the deep foundations and related industry. The DFI Journal is provided to DFI members at no cost electronically or can be purchased in print at www.dfi.org.

This paper is one of several papers and articles published form a series of research projects by KU and the Kansas DOT.  Some of the previous work can be found at these links:

Characterization of Loess for Deep Foundations (1/26/10)

Pierson, M., Parsons, R.L., Han, J., Brown, D.A. and Thompson, W.R. (2008). “Capacity of Laterally Loaded Shafts Constructed Behind the Face of a Mechanically Stabilized Earth Block Wall”, Report for the Kansas Department of Transportation

Lateral load tests of drilled shafts behind an MSE wall – research with KDOT and KU (12/6/07)

Geo-Florida 2010 Papers posted

geoflorida2010 logo

 

Audubon graph-GeoFlorida-Dapp

 

Papers by Dan, Steve, and Tim that were included in the GeoFlorida 2010 conference have been uploaded to our Publications page.  Dan and Steve co-authored a paper on the test program of the base grouted drilled shafts for the Audubon Bridge.  Tim co-authored a paper with Willie NeSmith of Berkel and Company Contractors, Inc. on plate load testing of displacement grout columns.  Dan was also a co-author with several others on a paper on jet grouting for improved pile lateral capacity.

 

Dapp, S.D. and Brown, D.A. (2010). “Evaluation of Base Grouted Drilled Shafts at the Audubon Bridge”, GeoFlorida 2010, Advances in Analysis, Modeling and Design, Geotechnical Special Publication No. 199, ASCE, pp1553-1562.

Rollins, K.M., Herbst, M., Adsero, M. and Brown, D.A. (2010) “Jet Grouting and Soil Mixing for Increased Lateral Pile Group Resistance”, GeoFlorida 2010, Advances in Analysis, Modeling and Design, Geotechnical Special Publication No. 199, ASCE, pp1563-1572.

Siegel, T.C. and NeSmith, W.M. (2010). “Large-Scale Plate Load Testing of Ground Improvement Using Displacement Grout Columns”, GeoFlorida 2010, Advances in Analysis, Modeling and Design, Geotechnical Special Publication No. 199, ASCE, pp2398-2405.

Video: Lateral Load Test with Statnamic Device

One area of work we are frequently involved in is data analysis and evaluation of lateral load tests performed by the Statnamic testing device (learn more at the website of Applied Foundation Testing).  The mathematics involved in the data reduction can be quite formidable as you interpret the dynamic load-response to an equivalent static load-response.  Regardless of the math behind it, watching a test can be pretty cool.  It is a whole lot of work for a brief moment of load, but in some situations it can be more economical than a traditional load test. 

The video below is from a test on 170-foot long, 32-inch outside diameter steel pipe pile with 0.75"-inch wall thickness.  The pile was filled with concrete that included an instrumented rebar cage.

Enjoy!