Tag Archives: Geotechnical Engineering

DBA is growing again – welcome to Ali, Ben, and Mark!

Well, we are at it again.  The first 5 months of 2016 have seen us add three new faces to the DBA team.  So now, drum roll, please………

Ali Leib, E.I.

Ali 2016-1

Ali was a summer intern at DBA in 2014 and 2015 and joined us full time as a staff engineer in February.  She is a recent graduate of the University of Tennessee (Go Vols!) where she completed both her B.S. and M.S. in civil engineering. While completing her M.S., she was a teaching assistant in charge of grading lab reports for the structural and geotechnical undergraduate labs. She was also a research assistant under Dr. Dayakar Penumadu, resulting in her thesis: “Effect of Particle Morphology on the Deformation Behavior of Sand under Monotonic Loading Conditions.”  Unlike most of the rest of us, Ali insists that she will not be conforming to the (mostly) standard DBA hair style.  Ali will work in our Knoxville, Tennessee office.

Mark Madgett, P.E.

Mark Madgett_s

 

Mark received a BS and MS degree in Civil Engineering at the University of Tennessee, while working on research for TDOT to improve pavement design methods.  He has worked in both consulting and construction for the last 22 years, focusing primarily on deep foundations in the Southeastern US.  As a consultant, Mark gained extensive field experience with deep foundation construction techniques and the impacts on design.  In 2006, he began working for Seaboard Foundations, opening a green field office in Tri-Cities TN as the district manager.  In his role as design engineer for Seaboard Foundations, Mark has implemented design-build techniques in many markets (energy, institutional, commercial, transportation, and healthcare) that vastly improved the constructability and reduced the costs of deep foundation systems for his clients.  Mark will also work outr of our Knoxville, Tennessee office.

Ben Turner, Ph. D., P.E.

Ben recently completed his Ph.D. in geotechnical earthquake engineering at UCLA with an emphasis on the transfer of forces between the ground and foundation elements during seismic loading. Prior to starting at UCLA, he worked for two years for the Los Angeles office of Shannon & Wilson, Inc.  Ben worked in both construction and geotechnical firms while attending school for his B.S. and M.S. degrees. His experience includes: design, construction, and load testing of deep foundations;  geotechnical earthquake engineering including soil-structure interaction, seismic hazard analysis, site response, liquefaction triggering analysis and mitigation of liquefaction-induced ground failure; and, characterization of structural behavior of reinforced concrete foundations.  Here are two of the publications resulting from his dissertation work:

Turner, B., Brandenberg, S., and Stewart, J. (). “Case Study of Parallel Bridges Affected by Liquefaction and Lateral Spreading.” J. Geotech. Geoenviron. Eng. , 10.1061/(ASCE)GT.1943-5606.0001480 , 05016001.

Turner, B. and Brandenberg, S. (2015) “Pile Pinning and Interaction of Adjacent Foundations During Lateral Spreading”, DFI Journal, Volume 9, Issue 2.

Ben will anchor the West Coast Region of DBA, working from San Luis Obispo , California.

 

Goethals Bridge – Up and out of the ground

(Post and photos provided by John Turner, Ph.D., P.E., D.GE of DBA.)

DBA has had the privilege to be the geotechnical/foundation engineer for the Goethals Bridge Replacement (GBR)Project, a design-build project for the Port Authority of New York & New Jersey (PANYNJ). The project will replace the existing Goethals Bridge that was built in the 1920s and carries I-278 over the Arthur Kill River between Elizabeth, New Jersey and Staten Island, New York.

Construction of drilled shafts continues as the superstructure begins to emerge over the skyline between Elizabeth, NJ and Staten Island, NY.  The new bridge will be a dual-span 1,983-ft long cable-stayed bridge with approach spans of over 2,500 ft on each side.  The bridge is supported on over 200 drilled shaft foundations ranging in diameter from 4.5 ft to 10 ft and socketed into Passaic Formation siltstone.

Goethals April 2016

The GBR is a Public-Private Partnership (P3) that represents a major milestone for the PANYNJ in its distinguished history of bridge building in the greater New York City metropolitan area.  The existing Goethals Bridge along with the Outerbridge Crossing and the Bayonne Bridge comprise the three Port Authority bridges connecting Staten Island with New Jersey.  The Goethals Bridge and the Outerbridge Crossing are cantilever truss structures and both opened on the same day in 1928. They were designed by J.A.L. Waddell under the supervision of the eminent engineer Othmar H. Ammann (1879-1965), who was the designer of many other iconic bridges in the NY City area including the Bayonne Bridge (1931), the George Washington Bridge (1931), and the Verrazano Narrows Bridge (1964).  The designer of record for the replacement Goethals Bridge is Parsons Corporation, which is the successor firm of Robinson & Steinman, whose principal David B. Steinman was also a notable NY area bridge designer and a contemporary and rival of O.H. Ammann.

Each main pylon tower of the GBR is supported on a group of six 9-ft diameter drilled shafts and each anchor pier is supported by two 10-ft diameter shafts.  Approach piers are two-column bents with each column supported on a rock-socketed drilled shaft.

Goethals shaft 1

DBA is the foundation design engineer of record and this project provides an example of how rock-socketed drilled shafts can provide a reliable and cost-effective means of supporting a major bridge by taking advantage of the high resistances that can be achieved.  Key factors involved in taking advantage of rock sockets for this project were:  (1) load testing to demonstrate high axial resistances (>30 ksf side resistance and  >300 ksf base resistance), (2) utilization of all relevant construction QC/QA tools to ensure that rock sockets are constructed in a manner that is consistent with construction of the load-tested shafts that provide the basis of the design, (3) close collaboration between all members of the design-build team, and (4) adequate subsurface characterization, especially a thorough characterization of rock characteristics and their effect on socket resistances. Load testing for this project demonstrates that side and base resistances can be used in combination to design rock socketed shafts for axial loading.  This approach avoids the use of unnecessarily deep sockets, thereby minimizing the associated construction risks and costs.

Goethals rendering

The GBR project developer is NYNJ Link Developer, LLC and construction is being performed by a joint venture of Kiewit-Weeks-Massman (KWM).  Parsons is the lead designer.  A construction web-cam and additional information on the GBR can be found at the Port Authority’s website: http://www.panynj.gov/bridges-tunnels/goethals-bridge-replacement.html

Foundations for the New Sacremento Entertainment and Sports Center

 

kingsarenanew_670

Contributed by Rob Saunders, P.E. – DBA

DBA has been working on an exciting new project currently under construction in downtown Sacramento, California: the new Sacramento Arena, known as the Entertainment and Sports Center (ESC).  The ESC will be a multi-use, publicly owned indoor arena. The Sacramento Kings will be the primary tenant and the arena is expected to host other indoor sports and music concerts, as well.  Once completed, the ESC will replace Sleep Train Arena as the home of the Kings.  According to Kings Chairman Vivek Ranadive, the 17,500-seat arena will be “one of the most iconic structures on the planet … It’s going to put Sacramento on the world map.”

turner

Turner Construction is the head of development for the new arena. Malcolm Drilling Company was awarded the contract to design and construct the foundation system.  DBA worked closely with Malcolm to design Omega piles (a drilled and grouted displacement pile) to serve as the foundations for the new arena.  The site presented unique design challenges, including liquefiable soil conditions and existing deep foundations from the demolisLogo_Malcolm_Stacked_Bluehed portion of the Downtown Plaza.

DBA’s design incorporates 18” and 24”  Omega piles.  An extensive site-specific load test program was performed to determine the axial resistances of the piles.  Eight test piles were instrumented with strain gauges to measure the load distribution in the piles.  Supplemental cone penetration testing was performed following load testing to better correlate the load test results with the subsurface conditions.

The piles were designed to resist ground motions from seismic events using site-specific ground curvature data developed by Pacific Engineering and Analysis. The piles were designed to resist the curvature at the anticipated pile section with only a single center reinforcing bar, eliminating the need to extend the entire cage to the bottom of the pile. This detail in the design is very important to ease the pile installation for the site conditions.

The final design incorporates a total of 952 piles to support the arena structure (346 18” dia. Piles and 606 24” dia. piles). The new arena is estimated to cost $477 million, with $255 million of that being funded by the City of Sacramento. The rest of the arena ($222 million) will be funded by the Sacramento Kings. Construction began October 29, 2014 and is planned to be completed by October of 2016.

The groundbreaking for the project was featured by the Sacremento Bee on October 29, 2014 (link).

Kansas City Load Test Photos Added

BPU Load Test

Last spring, DBA conducted a construction phase load test program for a U.S. Army Corps of Engineers floodwall improvement project  along the Missouri River in Kansas City, Kansas.  Located on property owned and maintained by the Kansas City Board of Public Utilities (BPU), the BPU floodwall was slated for structural improvements including a series of buttresses founded on 24-in drilled shafts.  As part of the project contract a load test program performed under the direction of a qualified P.E. and D.GE was required.  General contractor L.G. Barcus & Sons, Inc., secured our Paul Axtell, P.E., D.GE as the qualified load test expert.  DBA teamed up with load testing subcontractor Applied Foundation Testing, Inc., to perform the static load tests.

The load test program requirements included three test shafts, a statically loaded axial test shaft, a statically loaded lateral test shaft, and a combined statically loaded axial and lateral test shaft.  The required combined lateral and axial test shaft provided some unique challenges with respect to applying the loads and collecting data.  As can be seen in the picture above, the axial load was applied using dead weights.

We have added selected pictures from this unique project to our web albums, which can be viewed here.

New PEER Report – Evaluation of Collapse and Non-Collapse of Parallel Bridges Affected by Liquefaction and Lateral Spreading

webPEER-2014-10-Brandenberg

Our own Ben Turner (future Dr. Turner!) was lead author on a report by the Pacific Earthquake Engineering Research Center (PEER) on liquefaction and lateral spreading effects on bridges. The report is titled “Evaluation of Collapse and Non-Collapse of Parallel Bridges Affected by Liquefaction and Lateral Spreading”. Ben’s coauthors are Dr. Scott J. Brandenberg and Dr. Jonathan P. Stewart of the Department of Civil and Environmental Engineering at UCLA. From the abstract:

The Pacific Earthquake Engineering Research Center and the California Department of Transportation have recently developed design guidelines for computing foundation demands during lateral spreading using equivalent static analysis (ESA) procedures. In this study, ESA procedures are applied to two parallel bridges that were damaged during the 2010 M 7.2 El Mayor-Cucapah earthquake in Baja California, Mexico. The bridges are both located approximately 15 km from the surface rupture of the fault on soft alluvial soil site conditions. Estimated median ground motions in the area in the absence of liquefaction triggering are peak ground  accelerations = 0.27g and peak ground velocity = 38 cm/sec (RotD50 components). The bridges are structurally similar and both are supported on deep foundations, yet they performed differently during the earthquake. A span of the pile-supported railroad bridge collapsed, whereas the drilled-shaft-supported highway bridge suffered only moderate damage and remained in service following the earthquake. The ESA procedures applied to the structures using a consistent and repeatable framework for developing input parameters captured both the collapse of the railroad bridge and the performance of the highway bridge. Discussion is provided on selection of the geotechnical and structural modeling parameters as well as combining inertial demands with kinematic demands from lateral spreading.

This report is part of Ben’s work on his doctoral dissertation. You can download the report by clicking on the linked citation below.

Turner, B., Brandenberg, S.J. and Stewart, J.P. (2014). “Evaluation of Collapse and Non-Collapse of Parallel Bridges Affected by Liquefaction and Lateral Spreading”, PEER Report 2014/10, Pacific Earthquake Engineering Research Center, University of California, Berkley, August, 2014, 94pp.

Goethals Bridge Replacement – Webcam!

goethals-replacement-logo

DBA is on the design-build team that is replacing the Goethals Bridge for the Port Authority of New York and New Jersey (PANYNJ). We are not able to post much about the project or our involvement due to security agreements. However, the PANYNJ has a public website for the project (http://www.panynj.gov/bridges-tunnels/goethals-bridge-replacement.html) that has several webcams.  As is the case with most big projects these days, the webcams are a common feature and show some great views of the project.

To give you an idea of what the project involves, here is a summary from the PANYNJ site:

The replacement bridge will be located directly south of the existing bridge and will provide:

  • Three 12-foot-wide lanes in each direction replacing the current two narrow 10-foot-wide lanes
  • A 12-foot-wide outer shoulder and a 5-foot-wide inner shoulder in each direction
  • A 10-foot-wide sidewalk/bikeway along the northern edge of the New Jersey-bound roadway
  • Improved safety conditions and performance reliability by meeting current geometric design, structural integrity, security and seismic standards, and reduces life-cycle cost
  • A central corridor between the eastbound and westbound roadway decks, sufficient to accommodate potential transit service
  • State-of-the-art smart bridge technology

The project also includes the demolition of the existing bridge upon completion of the replacement bridge.

You can learn more about the project at the same web site.  There is also a site for the current bridge, including history of the construction, etc.

NCHRP Report 697 – Design Guidelines for Increasing Lateral Resistance of Bridge Pile Foundations

nchrp_rpt_697_coverWe have added a link to the NCHRP Report No. 697 Design Guidelines for Increasing Lateral Resistance of Bridge Pile Foundations.  This report was published in 2011 and authored by Kyle Rollins, Pd.D., P.E. of Brigham Young University and our own Dan Brown.  Dr. Rollins is a Professor in Geotechnical Engineering specializing in earthquake engineering and soil improvement.

 

In the forward of the report, Andrew Lemer of TRB writes:

NCHRP Report 697: Design Guidelines for Increasing the Lateral Resistance of Highway- Bridge Pile Foundations by Improving Weak Soils presents design guidance for strengthening of soils to resist lateral forces on bridge pile foundations. Lateral loads may be produced by wave action, wind, seismic events, ship impact, or traffic. Strengthening of soil surrounding the upper portions of piles and pile groups—for example by compaction, replacement of native soil with granular material, or mixing of cement with soil—may be more cost-effective than driving additional piles and extending pile caps as ways to increase the bridge foundation’s capacity to resist lateral forces associated with these loads. This report presents computational methods for assessing soil-strengthening options using finite-element analysis of single piles and pile groups and a simplified approach employing commercially available software. The analysis methodology and design guidelines will be helpful to designers responsible for bridge foundations likely to be exposed to significant lateral loads.

Be sure to browse all of the nifty reports and projects in geotechnical and foundation engineering at TRB here.

Also check out our Publications page regularly for new postings.

Websites That ROCK!

The blogosphere, as the world of blogging is sometimes called, is always changing as blogs come and go.  A new one focusing on geology education is geologydegree.org.  This is a new blog intended to promote the study of geology.  A recent post called Geology Online: 105 Websites That Rock included our very own blog as well as that of one of our good friends, GeoPrac.net by RockMan (aka Randy Post).  While DBA (and others listed, including GeoPrac.net) are not strictly geological blogs or websites, what we do includes a lot of geology as we design foundations to bear in or on rock.  Understanding the geology of a site is also important to understand the soils that are present above the bedrock.  Take a look, especially if you have a young’un (that’s Southern for young one, or child) at home that may find geology or geotechnical engineering interesting.

Happy Karl Terzaghi’s Birthday 2013!

35073b4ff676aec63696a7841514331414f6744

Happy Karl Terzaghi’s Birthday, my friends!  Yes, it is time to raise our coffee, espresso, tea, wine, beer or other beverage to toast the Father of Modern Soil Mechanics as has been our custom here at the DBA blog.

As I pondered what to write this year, I perused a couple of books and ended up looking through my copy of Richard Goodman’s  “Karl Terzaghi – The Engineer as Artist”.  Among the many stories and accounts, I found this passage recounting an incident in the late 1950s (Ch. 17, pp245):

At this critical time, the world was reminded of the terrible consequences of dam failure when Board member Andre Coyne’s Malpassat Dam failed in France, causing more than 400 deaths (in Frejus, very near Ruth’s 1939 refuge on the French Riviera).  It failed on the initial filling of the reservoir due to geological weakness in one of the rock abutments of the very thin concrete arch.Later Karl would express sever criticism of the decision to bold such a structure on a geologically inadequate site.  But now he comforted his distraught colleague, writing that “failures of this kind are, unfortunately, essential and inevitable links in the chain of progress in the realm of engineering, because there are no other means for detecting the limits to the validity of our concepts and procedures…. The torments which you experienced should at least be tempered by the knowledge that the sympathies of your colleagues in the engineering profession will be coupled with their gratitude for the benefits which they have derived from your bold pioneering.”

Throughout the book, Goodman does an excellent job of showing the different facets of Terzaghi, and this is no exception.  He had a reputation of being a tough, direct, and straight-forward engineer that did not pull punches.  Here we see a somewhat softer side as he comforts a colleague, who was an expert in his own right.

If you have not read Goodman’s book, I highly recommend it for all Terzaghi fans!  It is published by ASCE and can be found through the ASCE Bookstore, or at other book retailers.  (Disclosure:  Neither DBA or any of its employees receive any commissions, compensation, or other considerations for promoting this book.)

Deep Foundations Events Update–October 2013

As involved as we are in the deep foundations industry (and just returning from the DFI annual conference), it seemed appropriate to take time to highlight several upcoming events in the industry.  All of these are great opportunities to get PDH credits, do some networking, and build relationships in the deep foundations industry.  Most are cooperative efforts of one or more of the G-I, DFI, PDCA, and ADSC.  All of them have a line-up of great speakers that are leaders in the industry.  Click on the links below to learn more about each one. 

 

14th Annual Design and Installation of Cost-Efficient Piles Conference
Wednesday, October 23, 2013
Sheraton North Houston, Houston, TX

The DICEP conference will present modern approaches to maximize Efficiency, Effectiveness and Economy (E3) of driven piles through a series of presentations including driven pile design, testing, evaluation and case studies.  Steel sheet pile design and corrosion protection are also addressed.

 

 

Drilled Shaft Foundations Seminar – Reliability in Drilled Shaft Foundations
Thursday, November 7, 2013
Hilton Midtown, New York, NY

The program will feature presentations by leading industry design engineers and civil engineering contractors on some problems encountered with drilled shaft foundations and how those problems were solved.

 

 

Driven Pile – A Foundation for the 21st Century
Wednesday, November 13, 2013
Loews Vanderbilt Hotel, Nashville, TN

  • A one-day specialty seminar on driven piles
  • Featuring 11 presentations by key industry professionals
  • Provides 6 PDH credits for all participants, including 1 PDH on Ethics  

 

 

Here are few open Calls for Abstracts (by order of due date):

IFCEE 2015 – March 17-21, 2015 – San Antoniio, TX – Due October 28, 2013

DFI 39th Annual Conference on Deep Foundations – October 21-24, 2014 – Atlanta, GA – Due January 10, 2014

DFI Superpile 2014 – June 19-20, 2014 – Cambridge, MA – Due February 3, 2014