Tag Archives: Foundation Engineering

NCHRP micropile study report published – NCHRP Report 989

At long last, the report for the NCHRP micropile study performed by Erik, Dan D., and Andy is published. The report, Reliability-Based Geotechnical Resistance Factors for Axially Loaded Micropiles, is the result of a considerable research effort that aims to rework AASHTO’s micropile design methods. Highlights of the research tasks are listed below.

 

  • Compile a database of micropile load tests and organize the database by micropile type and ground conditions.
  • Develop new presumptive and predictive models for micropile design. The presumptive models are based only on micropile type and ground condition; the predictive models further consider soil or rock strength.
  • Calibrate probabilistic resistance factors for micropile design based on presumptive and predictive models, and for designs based on site-specific load tests. If adopted, the resistance factors for designs based on load tests would be the first for AASHTO to be based on probabilistic calibration rather than fitting to historical practices.

 

The report can be downloaded for free from TRB’s website:

 

https://www.trb.org/Publications/Blurbs/182710.aspx

Welcome Aaron Leopold, P.E.!

Aaron Leopold, P.E. joined the team this May with 8 years of geotechnical engineering experience.  He received a BS and MS in Civil Engineering from the University of Illinois at Urbana-Champaign.  His previous work at Shannon & Wilson mainly focused on the design and construction of deep foundations and retention systems.  Aaron was often on the road, observing complex geotechnical projects throughout the Midwest and Western United States consisting of drilled shafts, ground anchors, micropiles, augercast piles, and other deep foundation and earth retention systems.  He has supported numerous landslide stabilization projects utilizing his knowledge of 2D and 3D numerical modeling and has worked on large design-build projects from the pursuit through construction in the Rockies.  Aaron is also heavily involved within ASCE and other professional organizations in Colorado and will be based in Denver.

Welcome Adam blazejowski and frank russell!

We are starting 2022 with two new faces at DBA – a big welcome to Adam Blazejowski, EI and Frank Russell, EI.  Both will be based in our office in Knoxville, Tennessee, but will soon be like the rest of us at DBA – traveling to interesting project sites all over the U.S.  They will be working on many of the deep foundation and earth retention projects that are our staples.

Adam is  from London, Canada where he completed his B.S. degree in civil engineering at Western University in 2020.  He came to the United States to complete an M.S. in geotechnical engineering at Virginia Tech, where he performed research on the cyclic strength of sands.  Adam is also interested in risk-based design and reliability in geotechnical engineering.

Frank  is from Hickory Flat, Georgia and graduated from Auburn University with his B.S. in 2019 and his M.S. in 2021 in civil engineering.  During graduate school, he was a recipient of the Long Family Endowed Civil Engineering Graduate Study Scholarship from the ADSC – The International Association of Foundation Drilling. His graduate school research evaluated the methods used in pile load testing across Alabama Department of Transportation projects. 

Instrumentation at US 231 bridge and Slide

(Written by Andy Boeckmann – DBA)

After successful design and construction of the US 231 emergency slide repair in Lacey’s Spring, Alabama, DBA shifted gears to install a state-of-the-art monitoring system for the project. The monitoring system allows DBA and ALDOT to remotely detect any movement of the drilled shafts, changes in groundwater levels, and movement of the slope, itself.

The monitoring system includes ShapeAccelArray (SAAV) devices to measure displacement profiles with depth. SAAVs, which are manufactured by Measurand, consist of a chain of rigid segments, each 1.5-ft long and about 1-inch diameter. DBA installed 27 SAAV devices at US 231. Each of the 24 drilled shafts has one SAAV, which DBA installed in a 1-inch conduit welded to the drilled shaft reinforcement and emerging from the top of the grade beams connecting the shafts. The other three SAAVs are “free-field” SAAVs, installed in the soil between bridge bents. DBA worked with ALDOT’s drill crews to install the free-field SAAVs.

ALODT drill crew installing a free-field SAAV under the Northbound bridge.

 

Completed free-field and foundation instruments at Bent NB4.

 

DBA also worked with the ALDOT drill crews to install vibrating wire piezometer devices at six locations across the site. Each location includes two piezometers, one in the soil and one just below the top of rock. The piezometers were installed using the fully-grouted method. The piezometers measure pore pressure, which DBA uses to interpret groundwater conditions at the site.

 

Datalogger atop a vibrating wire piezometer.

 

All of the instruments are connected wirelessly to two central hubs that collect the data. The hubs are solar powered.  One of the hubs is equipped with a cellular modem that facilitates remote collection of the data.  RST Instruments manufactures the monitoring equipment as well as the vibrating wire piezometers.

Housing for SAAV devices installed in drilled shafts.

 

R-star hub and solar panel mounted to SB Bent 6.

 

Inside of data collection hub.

 

Results of the monitoring program indicate the foundation system is performing as designed. The US 231 structure has passed its first wet season with flying colors. Despite several periods of heavy rain that resulted in localized slope movement, the drilled shafts have shown only very small movement, typically less than 0.05 inch. The movement shown in the shafts indicates they are resisting loading from the slope movement, but with plenty of reserve capacity. The monitoring system has successfully captured realistic results from all instruments, including the drilled shaft and free-field SAAVs and piezometers.

Piezometer data shows strong correlation between rainfall and increases in groundwater levels.
Example of SAAV drilled shaft displacement. Shaft displacements are very small, typically less than the stated accuracy of the SAAV devices.

The monitoring system is more than just bells and whistles: it is an integral part of DBA’s design philosophy for the US 231 project. DBA engineers were able to implement the innovative strategy of drilled shafts through an active landslide because we knew performance of the foundation system would be actively monitored. This strategy represents a modern take on the observational method, which has represented best geotechnical engineering practice since the profession originated. DBA will also use results of the monitoring program to inform future designs, consistent with our commitment to using state of the art to improve the state of practice.

To read more in detail about the design and construction of the bridge foundations, we published an article i nthe April 2021 issue of Foundation Drilling Magazine:

Thompson, W.R. and Dapp, S.D. (2021). “Innovative Landslide Solution”, Foundation Drilling, Vol XLII, No. 3April 2021, pp51-62.

US 231 Emergency Slide Repair – Laceys Spring, Alabama

DBA had the great fortune to be working with the Alabama Department of Transportation (ALDOT) on a very interesting bridge project in Lacey’s Spring, Alabama just south of Huntsville, Alabama.  On February 12 and 13, 2020 a large landslide occurred on SR-53 (US-231) at milepost 301.7 in Morgan County approximately 1.7 miles south of the Laceys Spring Community.  The slide completely severed the 4-lane divided highway which is a major commuting route between Huntsville and several communities south of the city.  Many of the workers at the U.S. Army Redstone Arsenal, NASA Marshall Space Flight Center, and the contractors and vendors that support these two major installations live in the communities impacted by the closure of the highway.  Detours were established on existing state and county roads, but these added 30 to 60 minutes to commute times, depending on time of day.  ALDOT was under significant pressure from the impacted communities to quickly solve the problem and reopen the road.

ALDOT drill rigs performing exploratory drilling (DBA)

 

ALDOT drilling crews were immediately mobilized to the site to begin drilling exploratory borings and install slope inclinometer casings for monitoring slide movements.  The Department of Civil Engineering at Auburn University was engaged to perform geophysical testing in conjunction with an existing research project for ALDOT.  Geotechnical engineering firm TTL also assisted with field investigation efforts. 

DBA and ALDOT immediately began evaluating several alternate concepts for stabilizing the slide and reopening the road during the soil and rock exploratory drilling.  The design team looked at several retaining wall options, a complete rebuild of the roadway, and bridges.  ALDOT selected a solution that removed most of the existing roadway embankments (built in 1947 and 1970) to reduce loading on the slope and then spanning the slide area with bridges built on the existing road alignments, with the bridges designed to withstand future movements of the slope.  Excavation was begun by Reed Contracting before bridge design was complete in order for the rough grading to be done before the bridge contractor mobilized.

The bridges are two-lane structures, one Northbound and one Southbound, each about 947 ft in length.  The superstructure is AASHTO BT-72 concrete girders and a concrete deck.  There are seven spans in each bridge each about 135ft long.  The grading work was begun while the bridge was still being designed to accelerate the schedule and shorten the time the road would be closed.

The foundations for each pier are a pair of 9.5ft diameter, permanently cased drilled shafts with 9ft diameter rock sockets.  The sockets are 14ft long into the limestone and shale bedrock.  The limestone uniaxial compressive strengths range from 10,820 psi to 28,100 psi. 

After much design and analysis in a highly compressed schedule, a bridge contract was let for bid in early May 2020, less than 3 months after the slide occurred.  Brasfield & Gorrie was the successful bidder and awarded a $15 million contract that has incentives for finishing early, and disincentives for finishing late. 

 

ALDOT UAV flight June 16, 2020

ALDOT UAV flight July 07, 2020

ALDOT UAV flight July 23, 2020

ALDOT UAV flight July 28, 2020

ALDOT UAV Flight Aug 08, 2020

ALDOT UAV Flight Sep 2, 2020

ALDOT UAV Flight Sep 15, 2020

 

Excavating first shaft on the site (DBA)

 

A.H. Beck (Beck) was the drilled shaft contractor, drilling each shaft, placing reinforcement, and placing concrete.   The 9.5ft diameter permanent casing is 5/8 inch wall thickness spiral weld 60ksi steel fabricated by Nucor in Birmingham, Alabama.  The shafts are reinforced with a 1.5inch wall thickness, 8ft diameter, 60ksi steel pipe. These pipes were rolled and welded by Favor Steel in Birmingham, Alabama before being trucked to the site.  The steel plate was manufactured by SSAB in Axis, Alabama near Mobile.  So, the structural steel pipes were completely Alabama-made and the steel travel almost the length of the state!

8ft diameter x 1.5in wall steel pipe for shaft reinforcement (DBA)

 

Inner structural pipe (1.5in) and outer casing (5/8in) (DBA)

 

The pair of shafts for each pier is connected by a reinforced concrete grade beam 10ft wide by 7ft high by 46ft long. To connect the shafts to the grade beam, a 14ft long reinforcement cage is placed in each shaft, embedded 8ft into the shaft with 6ft embedded in the grade beam. The cage consists of 28 No.18 Grade 75 bars.

Grade beam at NB Bent 7 with column steel (DBA)

 

Completed shaft with reinforcing cage to embed in grade beam (DBA)

 

The project includes a robust instrumentation plan with ShapeArray inclinometers installed in each shaft and in the slope, supplemented by traditional inclinometers in the slope and vibrating piezometers to monitor groundwater levels.  DBA and ALDOT will monitor the bridge and slope, intending to be able to measure displacement and calculate strain and loads in the shafts should the slope move again in the future.

Foundations were completed a few days ahead of schedule at the end of July 2020.  The deadline to have the bridge open to traffic was early December, 2020, but Brasfield and Gorrie had an aggressive plan to complete the project early and earn the bonus for early completion.   The bridge was open to traffic September 28, 2021 to much rejoicing among the commuters and others that use this route.   Volkert was the CE&I Consultant on the project for ALDOT, providing construction management and inspection services for the project, ensuring all requirements were met to build the bridges.

To read more in detail about the design and construction of the bridge foundations, we published an article i nthe April 2021 issue of Foundation Drilling Magazine:

Thompson, W.R. and Dapp, S.D. (2021). “Innovative Landslide Solution”, Foundation Drilling, Vol XLII, No. 3April 2021, pp51-62.

Click HERE for some of the photos DBA team members have taken during construction.

To see aerial views from ALDOT’s UAV flight taken on July 10, 2020, click HERE.

 

 

DBA is growing again – welcome to Ali, Ben, and Mark!

Well, we are at it again.  The first 5 months of 2016 have seen us add three new faces of the new website creator.  So now, drum roll, please………

Ali Leib, E.I.

Ali 2016-1

Ali was a summer intern at DBA in 2014 and 2015 and joined us full time as a staff engineer in February.  She is a recent graduate of the University of Tennessee (Go Vols!) where she completed both her B.S. and M.S. in civil engineering. While completing her M.S., she was a teaching assistant in charge of grading lab reports for the structural and geotechnical undergraduate labs. She was also a research assistant under Dr. Dayakar Penumadu, resulting in her thesis: “Effect of Particle Morphology on the Deformation Behavior of Sand under Monotonic Loading Conditions.”  Unlike most of the rest of us, Ali insists that she will not be conforming to the (mostly) standard DBA hair style.  Ali will work in our Knoxville, Tennessee office.

Mark Madgett, P.E.

Mark Madgett_s

 

Mark received a BS and MS degree in Civil Engineering at the University of Tennessee, while working on research for TDOT to improve pavement design methods.  He has worked in both consulting and construction for the last 22 years, focusing primarily on deep foundations in the Southeastern US.  As a consultant, Mark gained extensive field experience with deep foundation construction techniques and the impacts on design.  In 2006, he began working for Seaboard Foundations, opening a green field office in Tri-Cities TN as the district manager.  In his role as design engineer for Seaboard Foundations, Mark has implemented design-build techniques in many markets (energy, institutional, commercial, transportation, and healthcare you can supplement if you find Kratom online and other natural products) that vastly improved the constructability and reduced the costs of deep foundation systems for his clients.  Mark will also work outr of our Knoxville, Tennessee office.

Ben Turner, Ph. D., P.E.

Ben recently completed his Ph.D. in geotechnical earthquake engineering at UCLA with an emphasis on the transfer of forces between the ground and foundation elements during seismic loading. Prior to starting at UCLA, he worked for two years for the Los Angeles office of Shannon & Wilson, Inc.  Ben worked in both construction and geotechnical firms while attending school for his B.S. and M.S. degrees. His experience includes: design, construction, and load testing of deep foundations;  geotechnical earthquake engineering including soil-structure interaction, seismic hazard analysis, site response, liquefaction triggering analysis and mitigation of liquefaction-induced ground failure; and, characterization of structural behavior of reinforced concrete foundations.  Here are two of the publications resulting from his dissertation work:

Turner, B., Brandenberg, S., and Stewart, J. (). “Case Study of Parallel Bridges Affected by Liquefaction and Lateral Spreading.” J. Geotech. Geoenviron. Eng. , 10.1061/(ASCE)GT.1943-5606.0001480 , 05016001.

Turner, B. and Brandenberg, S. (2015) “Pile Pinning and Interaction of Adjacent Foundations During Lateral Spreading”, DFI Journal, Volume 9, Issue 2.

Ben will anchor the West Coast Region of DBA, working from San Luis Obispo , California.

 

Incredible Pictures of St Croix Crossing Construction

St Croix Crossing Superstructure Construction
St Croix Crossing Superstructure Construction (photo courtesy of MnDOT)

Precast Box Segments
Precast Box Segments (photo courtesy of MnDOT)

Although foundation work has been complete at the St Croix Crossing project for quite some time now, MnDOT has recently posted some really amazing photos of the superstructure construction, or dome shelter of this huge bridge  on the project site and Facebook page.

The St Croix Crossing Bridge is an extradosed bridge, which is something of a cross between a segmental box girder and cable-stayed bridge.  The scale of the massive concrete segments can be seen in the picture above in comparison to the barge the segments are sitting on and some of the equipment in the background.

Goethals Bridge – Up and out of the ground

(Post and photos provided by John Turner, Ph.D., P.E., D.GE of DBA.)

DBA has had the privilege to be the geotechnical/foundation engineer for the Goethals Bridge Replacement (GBR)Project, a design-build project for the Port Authority of New York & New Jersey (PANYNJ). The project will replace the existing Goethals Bridge that was built in the 1920s and carries I-278 over the Arthur Kill River between Elizabeth, New Jersey and Staten Island, New York.

Construction of drilled shafts continues as the superstructure begins to emerge over the skyline between Elizabeth, NJ and Staten Island, NY.  The new bridge will be a dual-span 1,983-ft long cable-stayed bridge with approach spans of over 2,500 ft on each side.  The bridge is supported on over 200 drilled shaft foundations ranging in diameter from 4.5 ft to 10 ft and socketed into Passaic Formation siltstone.

Goethals April 2016

The GBR is a Public-Private Partnership (P3) that represents a major milestone for the PANYNJ in its distinguished history of bridge building in the greater New York City metropolitan area.  The existing Goethals Bridge along with the Outerbridge Crossing and the Bayonne Bridge comprise the three Port Authority bridges connecting Staten Island with New Jersey.  The Goethals Bridge and the Outerbridge Crossing are cantilever truss structures and both opened on the same day in 1928. They were designed by J.A.L. Waddell under the supervision of the eminent engineer Othmar H. Ammann (1879-1965), who was the designer of many other iconic bridges in the NY City area including the Bayonne Bridge (1931), the George Washington Bridge (1931), and the Verrazano Narrows Bridge (1964).  The designer of record for the replacement Goethals Bridge is Parsons Corporation, which is the successor firm of Robinson & Steinman, whose principal David B. Steinman was also a notable NY area bridge designer and a contemporary and rival of O.H. Ammann.

Each main pylon tower of the GBR is supported on a group of six 9-ft diameter drilled shafts and each anchor pier is supported by two 10-ft diameter shafts.  Approach piers are two-column bents with each column supported on a rock-socketed drilled shaft.

Goethals shaft 1

DBA is the foundation design engineer of record and this project provides an example of how rock-socketed drilled shafts can provide a reliable and cost-effective means of supporting a major bridge by taking advantage of the high resistances that can be achieved.  Key factors involved in taking advantage of rock sockets for this project were:  (1) load testing to demonstrate high axial resistances (>30 ksf side resistance and  >300 ksf base resistance), (2) utilization of all relevant construction QC/QA tools to ensure that rock sockets are constructed in a manner that is consistent with construction of the load-tested shafts that provide the basis of the design, (3) close collaboration between all members of the design-build team, and (4) adequate subsurface characterization, especially a thorough characterization of rock characteristics and their effect on socket resistances. Load testing for this project demonstrates that side and base resistances can be used in combination to design rock socketed shafts for axial loading.  This approach avoids the use of unnecessarily deep sockets, thereby minimizing the associated construction risks and costs.

Goethals rendering

The GBR project developer is NYNJ Link Developer, LLC and construction is being performed by a joint venture of Kiewit-Weeks-Massman (KWM).  Parsons is the lead designer.  A construction web-cam and additional information on the GBR can be found at the Port Authority’s website: http://www.panynj.gov/bridges-tunnels/goethals-bridge-replacement.html

Foundations for the New Sacremento Entertainment and Sports Center

 

kingsarenanew_670

Contributed by Rob Saunders, P.E. – DBA

DBA has been working on an exciting new project currently under construction in downtown Sacramento, California: the new Sacramento Arena, known as the Entertainment and Sports Center (ESC).  The ESC will be a multi-use, publicly owned indoor arena. The Sacramento Kings will be the primary tenant and the arena is expected to host other indoor sports and music concerts, as well.  Once completed, the ESC will replace Sleep Train Arena as the home of the Kings.  According to Kings Chairman Vivek Ranadive, the 17,500-seat arena will be “one of the most iconic structures on the planet … It’s going to put Sacramento on the world map.”

turner

Turner Construction is the head of development for the new arena. Malcolm Drilling Company was awarded the contract to design and construct the foundation system.  DBA worked closely with Malcolm to design Omega piles (a drilled and grouted displacement pile) to serve as the foundations for the new arena.  The site presented unique design challenges, including liquefiable soil conditions and existing deep foundations from the demolisLogo_Malcolm_Stacked_Bluehed portion of the Downtown Plaza.

DBA’s design incorporates 18” and 24”  Omega piles.  An extensive site-specific load test program was performed to determine the axial resistances of the piles.  Eight test piles were instrumented with strain gauges to measure the load distribution in the piles.  Supplemental cone penetration testing was performed following load testing to better correlate the load test results with the subsurface conditions.

The piles were designed to resist ground motions from seismic events using site-specific ground curvature data developed by Pacific Engineering and Analysis. The piles were designed to resist the curvature at the anticipated pile section with only a single center reinforcing bar, eliminating the need to extend the entire cage to the bottom of the pile. This detail in the design is very important to ease the pile installation for the site conditions.

The final design incorporates a total of 952 piles to support the arena structure (346 18” dia. Piles and 606 24” dia. piles). The new arena is estimated to cost $477 million, with $255 million of that being funded by the City of Sacramento. The rest of the arena ($222 million) will be funded by the Sacramento Kings. Construction began October 29, 2014 and is planned to be completed by October of 2016.

The groundbreaking for the project was featured by the Sacremento Bee on October 29, 2014 (link).

Kansas City Load Test Photos Added

BPU Load Test

Last spring, DBA conducted a construction phase load test program for a U.S. Army Corps of Engineers floodwall improvement project  along the Missouri River in Kansas City, Kansas.  Located on property owned and maintained by the Kansas City Board of Public Utilities (BPU), the BPU floodwall was slated for structural improvements including a series of buttresses founded on 24-in drilled shafts.  As part of the project contract a load test program performed under the direction of a qualified P.E. and D.GE was required.  General contractor L.G. Barcus & Sons, Inc., secured our Paul Axtell, P.E., D.GE as the qualified load test expert.  DBA teamed up with load testing subcontractor Applied Foundation Testing, Inc., to perform the static load tests.

The load test program requirements included three test shafts, a statically loaded axial test shaft, a statically loaded lateral test shaft, and a combined statically loaded axial and lateral test shaft.  The required combined lateral and axial test shaft provided some unique challenges with respect to applying the loads and collecting data.  As can be seen in the picture above, the axial load was applied using dead weights.

We have added selected pictures from this unique project to our web albums, which can be viewed here.