Tag Archives: Drilled Shaft Design

Early Statnamic Lateral Load Test Paper by Dan

While at the 2012 Geo-Congress I purchased a couple of books at the ASCE bookstore.  One was GSP 88: Analysis, Design, Construction and Testing of Deep Foundations, Proceedings of the OTRC ‘99 Conference. There are several interesting papers in the GSP, including an early paper by Dan on lateral Statnamic testing.  A full scale lateral load test was performed on a 36 inch tests shaft using a Statnamic device.  The test was performed at the Auburn University National Geotechnical Experiment Station Site (NGES).  I guess you could say this paper is literally a “blast” from the past!

 

Brown, D.A. (1999). “An Experiment with Statnamic Lateral Loading of a Drilled Shaft”, Geotechnical Special Publication No. 88: Analysis, Design, Construction and Testing of Deep Foundations, Proceedings of the OTRC ‘99 Conference, Austin, Texas, April 29-30, 1999, ASCE, pp309-318.

GeoCongress 2012–Dan Gives A SOP Lecture; John Turner paper published

GeoCongress 2012, Oakland, California

GeoCongress 2012 Proceedings

In addition to the ADSC EXPO 2012 earlier in March (see post here), the annual Geo-Institute meeting for 2012, GeoCongress 2012 , was held later in the month in Oakland, California.  The conference featured a very large technical program with a variety of tracks covering geotechnical engineering topics.  There were also the annual named lectures (Terzaghi, Peck, etc.) and other special events. Randy Post wrote about his time at the GeoCongress at his blog, GeoPrac.net.  Check out all of his posts on the conference, including photos and video.

A key feature of this congress was the State of the Art (SOA) and State of the Practice (SOP) Lectures given throughout the four days.  Thirty prominent engineers were invited to give the SOA/SOP lectures.  Dan gave one of the SOP lectures with his highlighting advances in drilled foundation use and selection. His paper, along with all of the other SOA/SOP lectures, is included in GSP No. 226, Geotechnical Engineering State of the Art and Practice, Keynote Lectures from GeoCongress 2012.  His presentation is linked on the image below.

Pages from DB drilled foundations 2012 Oakland GI [Compatibility Mode]

 

During the regular technical sessions, John Turner presented a paper on a recent project case history on rock-socketed drilled shaft foundations used for a bridge . His paper is in the conference proceedings volume (GSP No. 225):

Turner, J.P., Duffy, J.D., Buell, R. and Zheng, X (2012). “Foundations for the Bridge at Pitkins Curve”, GeoCongress 2012 State of the Art and Practice in Geotechnical Engineering, Geotechnical Special Publication No. 225, ASCE, pp414-423.

Hyperbolic P-Y Model from Lateral Load Tests in Loess Soils

Another paper featured in the December 2011 issue of the DFI Journal was authored by Steve and Dan, along with Dr. Bob Parsons at the University of Kansas

Dapp, S.D., Brown, D.A., and Parsons, R.L. (2011). “Hyperbolic P-Y Model for Static and Cyclic Lateral Loading Derived from Full-Scale Lateral Load Tesing in Cemented Loess Soils”, DFI Journal Volume 5, Number 2, December 2011, Deep Foundations Institute, pp35-43.

The paper describes a program of lateral load tests on six drilled shafts installed in a loess deposit at a site in Wyandotte County, Kansas.  The lateral load test data, along with site characterization data that included CPT data, were used to develop a hyperbolic model to generate p-y curves for use in lateral load analyses in cemented soils.  The model should be applicable to many “c-phi” soils (soils with both a cohesion intercept and a friction angle, such as cemented soils).  Degradation of the static soil model to account for cyclic loading effects is included in the new model.

This paper was originally published in the DFI Journal, Vol. 5 No. 2, December 2011, the bi-annual Journal of the Deep Foundations Institute.  DFI is an international technical association of firms and individuals involved in the deep foundations and related industry. The DFI Journal is provided to DFI members at no cost electronically or can be purchased in print at www.dfi.org.

This paper is one of several papers and articles published form a series of research projects by KU and the Kansas DOT.  Some of the previous work can be found at these links:

Characterization of Loess for Deep Foundations (1/26/10)

Pierson, M., Parsons, R.L., Han, J., Brown, D.A. and Thompson, W.R. (2008). "Capacity of Laterally Loaded Shafts Constructed Behind the Face of a Mechanically Stabilized Earth Block Wall", Report for the Kansas Department of Transportation

Lateral load tests of drilled shafts behind an MSE wall – research with KDOT and KU (12/6/07)

ADSC SE Chapter Lawrenceville Test Site Report Published

Fig 12 - Test shaft 1 completedThe report for the ADSC Southeast Chapter Lawrenceville, Georgia Test Site is complete and published (link below).

This is the second report from their research project on rock-socketed drilled shafts in the Southeast U.S.  This report is from the Lawrenceville, Georgia test site where shafts constructed in metamorphic rock of the Piedmont geologic province were load tested using the O-Cell load test device.  The report link is below.  Additional information about the test site can be found at the Lawrenceville Site Page.

The first site of this project was in Nashville, Tennessee where shafts constructed in limestone were tested.  Information on the Nashville Site and the test reports can be found at the Nashville Site Page.

Both reports will be the feature of a paper and presentation by Robert at the 2012 ADSC Expo, March 13-17, in San Antonio, TX. More information about the Expo can be found here.

Thompson, W.R., Brown, D.A., and Hudson, A.B. (2012). “Load Testing of Drilled Shaft Foundations in Piedmont Rock, Lawrenceville, GA, Report for ADSC Southeast Chapter, January, 2012.

I-70 St. Louis Bridge–New Papers by Paul and Dan

The drilled shaft foundations for the new I-70 Mississippi River Bridge in St. Louis, MO are the subject of two recent papers written by Paul and Dan and published by DFI.  Dan presented the paper focusing on the Alternate Technical Concept (ATC) process at the DFI 36th Annual Conference in October. (previous post here).  A case history paper by Paul and Dan was published last month in Volume 5, Number 2 of the DFI Journal.  Links to the papers are below, as well as on our Publications page.  Other posts on this bridge are here.

Brown, D.A., Axtell, P.J., and Kelley, J. (2011). “The Alternate Technical Concept Process for the Foundations at the New Mississippi River Bridge, St. Louis”,  Proceedings of the 36th Annual Conference on Deep Foundations, 2011, Boston, MA, USA, pp171-177.

This paper was originally published in the Proceedings of the 36th Annual Conference on Deep Foundations, the 2011 annual meeting of DFI.  Go to www.dfi.org to purchase the procedings or for further information.

Axtell, P.J. and Brown, D.A. (2011). “Case History – Foundations for the New Mississippi River Bridge – St.Louis”, DFI Journal Volume 5, Number 2, December 2011, Deep Foundations Institute, pp3-15.

This paper was originally published in DFI’s bi-annual journal, Volume 5, No. 2 in December 2011.  DFI is an international technical association of firms and individuals involved in the deep foundations and related industry. The DFI Journal is a member publication. To join DFI and receive the journal, go to www.dfi.org for further information.

ADSC Lawrenceville Test Site–We Have Winners!

That’s right load test fans, The results are in! The ADSC Southeast Chapter is proud to announce the “winners” from the prediction contest for the Lawrenceville, GA test site. In the table below, we have listed the winner and their prediction. The winners are the closest to the average measured values as reported by Loadtest, Inc and may not represent the reported maximum values recommended in the final report by DBA. We won’t release the final report until the ASCE Georgia Section Geotechnical Group meeting November 15, 2011 at 6:30pm at the Georgia Power Company’s Headquarters in Atlanta. Dr. Brown will be presenting the findings then – so come to the meeting and get it first, or look to the DBA or ADSC web sites after November 15th to get the report.

 

Shaft

Name

Prediction

1 – Unit Base Resistance

Gloria Rodgers
(Building and Earth Sciences, Inc.)

750 ksf

1 – Unit Side Resistance

Todd Barber (Geo-Hydro Engineers, Inc.)

50 ksf

2 – Unit Base Resistance

Todd Barber (Geo-Hydro Engineers, Inc.)

690 ksf

2 – Unit Side Resistance

TIE:
Jim Pegues (Southern Company Svcs.)
Tom Scruggs (Georgia DOT)

3 ksf

Drilled Shaft Article by Dan in Geo-Strata

Constructability Considerations When Designing Drilled Shaft Foundations for Bridges

The May/June 2011 issue of ASCE’s Geo-Strata focuses on bridge geotechnics.  Dan contributed an article to this issue summarizing key constructability considerations for bridge drilled shaft designers.  Specifically, the article focuses on fresh concrete properties and reinforcement design.  Discussion of self consolidating concrete (SCC) and column-shaft connections is also included.  The article has been added to our publications page and is available through the link above.  Additional details related to bridge drilled shaft constructability can be found in the 2010 FHWA Drilled Shaft Manual here.

Audubon Bridge Opened To Traffic (earlier than planned!)

The John James Audubon Bridge was opened to traffic on May 10, 2011 a little earlier than planned.  While the project is not 100% complete, the bridge was sufficiently complete to allow an emergency opening due to closure of the nearby ferry the bridge is replacing.  From the project website:

Due to the high level of the Mississippi River causing the closure of the New Roads/St. Francisville ferry, the Louisiana Department of Transportation and Development (DOTD) opened the John James Audubon Bridge at 10 a.m. on Thursday, May 5, 2011. This emergency opening allowed continuous river-crossing access for traffic affected by the ferry closure. The ferry, which carried approximately 720 vehicles per day according to 2009-2010 DOTD statistics, is permanently closed with the opening of the Audubon Bridge.

Construction is still ongoing and could affect traffic until the project is 100% complete later this year.

ADSC Load Test Research – Lawrenceville, GA Site – SCHEDULE UPDATE

The planned second load test in the ADSC research project for rock sockets in the Southeastern U.S. is moving closer to execution.  Bruce Long of Long Foundation Drilling Company provides this update:

To Fellow Load Testers,

We want to thank everyone who submitted questions or comments regarding the preliminary load test program submitted to us by Dr. Dan Brown.  Those comments, and more, will be considered while fine-tuning the program.

Because we have several Share Registrars companies donating their time and money, we have to be flexible with respect to the installation and testing dates.  We have tentatively selected some dates, but these are subject to change depending upon the workloads of those volunteering their efforts.  We hope to begin shaft installation during the last two weeks of July (weeks beginning the 18th or 25th).  The actual load testing would probably take place the week of August 8th, with the actual test date being decided upon by sometime in early July (I hope to give everyone at least a 3-4 week notice). 

The actual test date would include a field day visit by all interested parties to the test site at Foundation Technologies office in Lawrenceville, GA.  Activities will include a load testing discussion led by Dr. Dan Brown, along with lunch.  We would then move to the test site where Loadtest, Inc. will be conducting the Osterberg Load Test on our first shaft.  A discussion of the testing process and procedures by Loadtest will precede the actual testing (We will be submitting information later regarding a load test contest where each of you will get to predict the outcome of the test with a special prize going to the winner).  We also hope to be drilling on the second shaft that day and will be discussing the drill rigs, tools, and other equipment being used, as well as having the other Osterberg cell available for viewing.  This site visit proved to be very well received when we did it in Nashville at the last load test.  We hope for a big turnout that day. 

I wanted to give everybody a brief update and will be in touch when additional information becomes available in the near future.  Thank you for your interest, and if anyone has any questions regarding this plan, please feel free to call me at your convenience.

Bruce Long

President

Long Foundation Drilling Co.

Previous post is here.

The test site page is here.

The main page for the research project is here.

Dr. John Turner, P.E. joins DBA!

We are pleased to announce that John P. Turner, Ph.D., P.E., has joined our firm as a Senior Principal. Turner is Professor Emeritus, University of Wyoming, where he spent the past 25 years teaching and conducting research in geotechnical engineering. He has undergraduate degrees in both Geology and Civil Engineering and earned his doctorate in Geotechnical Engineering from Cornell University. John will bring his considerable expertise in design and construction of deep foundations to our practice. He is a co-author of the 2010 FHWA manual “Drilled Shafts: Construction Procedures and LRFD Design Methods” and the author of NCHRP Synthesis 360, “Rock-Socketed Shafts for Highway Structure Foundations”, as well as over 100 technical publications on the topics of deep foundations, earth retention, and landslide stabilization. Early in his career John was an engineering geologist with Herbert and Associates and he maintained his involvement in consulting throughout his academic career. Recent projects include design of rock-socketed drilled shafts for bridges at Pitkins Curve in Big Sur and the Antlers Bridge on I-5 in northern California. John is a recipient of the President’s Award and the Distinguished Service Award from the ADSC: International Association of Foundation Drilling. He has maintained active membership in ASCE for over 30 years and is a past chairman of the Committee on Deep Foundations of the Geo-Institute of ASCE.