Tag Archives: Drilled Shaft Construction

ADSC SE Chapter Lawrenceville Test Site Report Published

Fig 12 - Test shaft 1 completedThe report for the ADSC Southeast Chapter Lawrenceville, Georgia Test Site is complete and published (link below).

This is the second report from their research project on rock-socketed drilled shafts in the Southeast U.S.  This report is from the Lawrenceville, Georgia test site where shafts constructed in metamorphic rock of the Piedmont geologic province were load tested using the O-Cell load test device.  The report link is below.  Additional information about the test site can be found at the Lawrenceville Site Page.

The first site of this project was in Nashville, Tennessee where shafts constructed in limestone were tested.  Information on the Nashville Site and the test reports can be found at the Nashville Site Page.

Both reports will be the feature of a paper and presentation by Robert at the 2012 ADSC Expo, March 13-17, in San Antonio, TX. More information about the Expo can be found here.

Thompson, W.R., Brown, D.A., and Hudson, A.B. (2012). “Load Testing of Drilled Shaft Foundations in Piedmont Rock, Lawrenceville, GA, Report for ADSC Southeast Chapter, January, 2012.

I-70 St. Louis Bridge–New Papers by Paul and Dan

The drilled shaft foundations for the new I-70 Mississippi River Bridge in St. Louis, MO are the subject of two recent papers written by Paul and Dan and published by DFI.  Dan presented the paper focusing on the Alternate Technical Concept (ATC) process at the DFI 36th Annual Conference in October. (previous post here).  A case history paper by Paul and Dan was published last month in Volume 5, Number 2 of the DFI Journal.  Links to the papers are below, as well as on our Publications page.  Other posts on this bridge are here.

Brown, D.A., Axtell, P.J., and Kelley, J. (2011). “The Alternate Technical Concept Process for the Foundations at the New Mississippi River Bridge, St. Louis”,  Proceedings of the 36th Annual Conference on Deep Foundations, 2011, Boston, MA, USA, pp171-177.

This paper was originally published in the Proceedings of the 36th Annual Conference on Deep Foundations, the 2011 annual meeting of DFI.  Go to www.dfi.org to purchase the procedings or for further information.

Axtell, P.J. and Brown, D.A. (2011). “Case History – Foundations for the New Mississippi River Bridge – St.Louis”, DFI Journal Volume 5, Number 2, December 2011, Deep Foundations Institute, pp3-15.

This paper was originally published in DFI’s bi-annual journal, Volume 5, No. 2 in December 2011.  DFI is an international technical association of firms and individuals involved in the deep foundations and related industry. The DFI Journal is a member publication. To join DFI and receive the journal, go to www.dfi.org for further information.

Hastings Bridge Receives Press as Foundations Near Completion

As massive concrete piers rise from the Mississippi river in southeast Minnesota, people have begun to take notice of what will become the longest free-standing tied-arch bridge in North America.  A unique project in several respects, the new Hasting bridge has recently been featured in articles on the websites of ENR and Roads & Bridges.  The ENR article is a republication of an article that originally appeared in the Minneapolis Star Tribune highlighting the construction process of the last year, with particular focus on the process of constructing the river piers.  The Roads & Bridges article is a more technically in-depth piece written by the lead bridge engineer Vincent T. Gastoni, P.E., of Parsons Transportation Group.  Both articles discuss some of the many geotechnical changes faced on this project.  This excerpt from Roads & Bridges is a concise description of the pier foundations and some of the reasoning behind their selection:

The main river piers are concrete delta-style frames with the tied-arch superstructure fully framed into the pier through the knuckle connection. The stiffness of the foundation system was then integral to the overall force effects in the structure. The north pier is located in 190 ft of soft soils overlaying rock and supported on unfilled 42-in. driven steel pipe piles. Drilled shafts were investigated early but were not cost-effective, impacted the schedule and presented a risk to the existing bridge due to potential caving effects. Statnamic pile load testing was used to validate the vertical capacity and lateral performance of the 42-in. piles. The south pier footing is close to the rock surface; however, the rock was deeper, more sloped than expected, and the originally planned spread footing was changed to short drilled shafts during the final design. Dan Brown & Associates provided the team with geotechnical analysis and recommendations.

Our Tim Siegel pointed out that the statement “It’s a marvel of engineering that requires ingenious construction techniques, most of which are invisible to the drivers whizzing by overhead,” from the Star Tribune, is an accurate description of how our work as foundation designers and constructors is often viewed.  Although much of the ingenuity and innovation that goes into the geotechnical aspects of projects often goes unnoticed by the general public, it is certainly refreshing to see articles like these.  For us at DBA, it is even more refreshing to see our efforts credited by name as they were in the article by Vince when he wrote, “Dan Brown & Associates provided the team with geotechnical analysis and recommendations.”

For a design-build project with so many different geotechnical components (driven piles, drilled shafts, spread footings, retaining walls, a column-supported embankment, and light weight fill), it is hard to believe that our role as the lead geotechnical engineer is nearing completion just a little over a year after construction began.  At this point, the only foundations that have yet to be constructed are some of the rock bearing spread footings at the south approach.  DBA will also monitor instrumentation installed in the column-supported embankment for the next two years.

Previous blog posts by Aaron and David can be found here:Hastings Bridge Update and Hastings Update and Photo Album.  Additional information can be found on the DBA project page here.

Audubon Bridge Foundations in Fall 2011 “Deep Foundations”

DFI Fall 2011_Audubon

Dan and Steve co-authored an article in the Fall 2011 issue of Deep Foundations (from DFI) that covered the foundations for the recently completed record-setting Audubon Bridge in Louisiana.  Dan and Steve cover not only the shaft testing, design, and construction, but also the unique cofferdam used for the tower foundations.  I recently highlighted an article by Sereno Brown, P.E. of Flatiron that covered the design and installation of the cofferdam in detail. 

You can receive Deep Foundations every quarter (soon bi-monthly!), as well as the DFI Journal, by joining DFI.  Get information on joining at this link – click on “Membership” at the top banner.

Audubon Bridge–Cofferdam Construction Article

LA-Civil-Eng-JJABridge

As noted earlier on this blog, the Audubon Bridge opened a little bit earlier than planned.  Although over a year old, an article recently came to my attention that puts a spotlight on the unique engineering and construction that went into the cofferdams for the two main bridge piers in the Mississippi River.  The article is “John James Audubon Bridge Project – Cofferdam Construction for the Main Span Pier Foundations”, published in the February 2010 issue of Louisiana Civil Engineer, the Journal of the Louisiana Section of the American Society of Civil Engineers.

The article’s lead author, Sereno Brown, P.E., was the construction team’s Project Engineer for the design-build project.  In the article, Mr. Brown outlines the issues that led to the team selecting a pre-cast concrete cofferdam over other methods, the design methodology, and then the construction of the cofferdam.  The effort posed several significant design and construction challenges, including the sequence of lowering the cofferdam into place through a set of hydraulic jacks. The entire process was truly an amazing engineering and construction feat.

Download the article here.

ADSC Lawrenceville Test Site–Prediction Contest!

Update (7/31/11)Field Day set for Thursday, August 18th – More info here!

Back by popular demand, we will hold a prediction contest for the second test site in the ADSC drilled shaft research project for rock sockets in the Southeastern U.S.  Contestants are encouraged to download the information linked below and then submit their predictions of unit side resistance and base resistance that will be measured by the O-cell tests.  The winner will be announced at the field test and demonstration day on site, as well as published in this blog along with all submitted predictions.

Two test shafts will be installed July 26 – 29th at the yard of Foundation Technologies, Inc. One will include a rock socket to attempt to test side and base resistance in the rock socket.  The other shaft will be drilled to “rock auger refusal” to attempt to test side resistance in the partially weathered rock (locally termed PWR) and base resistance at “rock auger refusal”.  In the Piedmont area, the highly weathered upper rock zone is commonly called PWR.  Another common usage is “rock auger refusal” to define where “hard rock” begins.  It is thought that designers may be overly conservative with base resistance values at “rock auger refusal”.  Hopefully this test will provide useful data in that regard.

Testing will occur during a field demonstration day in mid-August. We’ll post the date once it is finalized.

Information to include the test shaft configurations and exploratory boring data can be downloaded here.

The contest entry form along with instructions for submission can be downloaded here.

We will have Aaron on site to observe and take lots of pictures.  We’ll post his photos of the excavations as soon as we can (check the project web page soon after August 1st) to assist in making predictions.

All predictions must be submitted by the close of business, August 12, 2011.

For more information, visit the test site page.

Previous posts.

Audubon Bridge Opened To Traffic (earlier than planned!)

The John James Audubon Bridge was opened to traffic on May 10, 2011 a little earlier than planned.  While the project is not 100% complete, the bridge was sufficiently complete to allow an emergency opening due to closure of the nearby ferry the bridge is replacing.  From the project website:

Due to the high level of the Mississippi River causing the closure of the New Roads/St. Francisville ferry, the Louisiana Department of Transportation and Development (DOTD) opened the John James Audubon Bridge at 10 a.m. on Thursday, May 5, 2011. This emergency opening allowed continuous river-crossing access for traffic affected by the ferry closure. The ferry, which carried approximately 720 vehicles per day according to 2009-2010 DOTD statistics, is permanently closed with the opening of the Audubon Bridge.

Construction is still ongoing and could affect traffic until the project is 100% complete later this year.

ADSC Load Test Research – Lawrenceville, GA Site – SCHEDULE UPDATE

The planned second load test in the ADSC research project for rock sockets in the Southeastern U.S. is moving closer to execution.  Bruce Long of Long Foundation Drilling Company provides this update:

To Fellow Load Testers,

We want to thank everyone who submitted questions or comments regarding the preliminary load test program submitted to us by Dr. Dan Brown.  Those comments, and more, will be considered while fine-tuning the program.

Because we have several Share Registrars companies donating their time and money, we have to be flexible with respect to the installation and testing dates.  We have tentatively selected some dates, but these are subject to change depending upon the workloads of those volunteering their efforts.  We hope to begin shaft installation during the last two weeks of July (weeks beginning the 18th or 25th).  The actual load testing would probably take place the week of August 8th, with the actual test date being decided upon by sometime in early July (I hope to give everyone at least a 3-4 week notice). 

The actual test date would include a field day visit by all interested parties to the test site at Foundation Technologies office in Lawrenceville, GA.  Activities will include a load testing discussion led by Dr. Dan Brown, along with lunch.  We would then move to the test site where Loadtest, Inc. will be conducting the Osterberg Load Test on our first shaft.  A discussion of the testing process and procedures by Loadtest will precede the actual testing (We will be submitting information later regarding a load test contest where each of you will get to predict the outcome of the test with a special prize going to the winner).  We also hope to be drilling on the second shaft that day and will be discussing the drill rigs, tools, and other equipment being used, as well as having the other Osterberg cell available for viewing.  This site visit proved to be very well received when we did it in Nashville at the last load test.  We hope for a big turnout that day. 

I wanted to give everybody a brief update and will be in touch when additional information becomes available in the near future.  Thank you for your interest, and if anyone has any questions regarding this plan, please feel free to call me at your convenience.

Bruce Long

President

Long Foundation Drilling Co.

Previous post is here.

The test site page is here.

The main page for the research project is here.

ADSC Rock-Socketed Drilled Shafts in the SE Research Project Site No.2 – Comments Welcomed

After some lengthy delays, the rock-socketed drilled shaft research sponsored by the Southeast Chapter of the ADSC is back on track.  A second site has been selected at the site of Foundation Technologies, Inc. in Lawrenceville, Georgia.  This site will investigate the resistance of some of the rocks of the Piedmont for drilled shaft design.  The first test site was in Nashville, Tennessee.  The report of the first test site and other information can be found at the test site page.   General information about the complete project, including a list of participating/contributing companies and organizations, can be found at the project page.

Bruce Long (Long Foundation Drilling Company) is the lead for the ADSC on this project and has requested interested parties to provide comment on the test plan for the second site (see links below).  The hope is to have load testing occur this July if every thing comes together properly.  Bruce sent the following email with some refresher material on the Nashville test site and an update on the startup for the Lawrenceville site:

 

First, I would like for everyone to know that the load test program jointly planned between the Atlanta area ASCE Geotechnical community and the Southeast Chapter of the ADSC is alive and well despite some longer than planned delays.  The final boring data has been in hand for some time and Dan Brown and his group have reviewed this information and submitted a preliminary load test program for review and comment.  This program is very similar to the test program that was performed in Nashville a couple of years back.  For informational purposes, the results of that test program has resulted in an increased awareness of the available load carrying capacity in the limestone formations in the area.  Historically, shafts were designed almost exclusively utilizing end bearing with the normal range of values allowed ranging from 60-100 KSF.  In recent months, we have seen projects now being designed with recommended values ranging from 100 up to 250 KSF with an increasing number of designs also relying on skin friction values up to 25 KSF in sound limestone sockets.  The information gained from these load tests has given area engineers increased confidence in raising the bar for future drilled shaft designs.  This will result in lower foundation costs for owners of public and private projects alike.  For those involved in the design process, better information will result in improved design values and an improved competitive position for those willing to utilize this data.

Now we are prepared to move forward with the planned testing in the Atlanta area.  I have attached the final geotechnical report for your review.  There are several people and companies that have generously volunteered their time and expertise to make this happen, Todd Barber with Geo-Hydro Engineers, Inc. being the most notable of these.  His persistence and assistance was invaluable.  Others that contributed in a variety of ways include Mactec, Golder Associates, Georgia Tech and GeoTesting Express.  Thanks to everyone for their efforts.

Also attached is the preliminary memo from Rob Thompson of Dan Brown and Associates.  What he has outlined are suggestions based upon the boring information for two separate Osterberg Load cell tests.  One would be on a shaft that was hand-cleaned, while the second shaft would be machine-cleaned only.  This would allow a comparison to determine the effects (if any) that traditional hand-cleaning has on shaft behavior.  This memo is being sent out with the intention that review and comments from the geotechnical community be considered and incorporated in the final program.  Depending upon the extent of comments, a final meeting could be necessary to discuss any proposed revisions.  If suggestions are minimal, such a meeting might not be required.  In this case, we would proceed with shaft installation and testing as soon as possible.

Thanks for your patience–I think that the final results will be worth the time.  It has been very rare that full scale load testing be done in hard rock areas (Piedmont or Limestone), but if the results of our Nashville area testing are any indication, I think the results will definitely show that the effort was worthwhile.

Please take time to review this information and e-mail or call me with any comments that you might have.  As soon as all comments have been reviewed, we will let everyone know our plan to proceed.  I would like to have comments submitted to me by May 27, 2011.  If there are any questions regarding our plans, schedule, etc., please feel free to contact me at your convenience.

 

I have linked the proposed load test plan memo and the boring information below. Bruce would like comments from interested parties to be submitted by May 27, 2011. Please submit comments to him at blong@lfdc.com.

A blog page for this test site has been created and will be updated as the project progresses. We intend to have a prediction contest similar to the one we had for the Nashville site, so keep checking for information. Better yet, subscribe to our blog using one of the social media links at the top of the right sidebar of the blog.

Load Test Plan Memo from Dan Brown (20 May 2010)

Summary of Test Borings from GeoHydro Engineers (26 Jan 2010)

Hastings Update and Photo Album

Well, I, David, have survived my first (and hopefully last) winter in Minnesota.  I spent most of January and February observing the installation of the Pier 5 drilled shafts at the new Hastings bridge project in Hastings, Minnesota.  In addition to the drilled shafts, there has been a lot activity at Hastings since Aaron last blogged about this project in January.  A link to his post is here.  All of the ground improvement piles for the column-supported embankment have been installed and approximately 75% of the caps have been poured.  The 42-inch piles and pile caps for Piers 8, 9, and 10 are also complete.  Piles for the north embankment retaining wall have been installed and construction of the wall has begun.  Excavation for the rock bearing spread footings that will support the south land piers is in progress.  Work at Piers 6 and 7 and on the north shore are currently on hold as the Mississippi River is experiencing its annual spring flood. The water level is about 14 feet above normal elevation.

I have taken the pictures Paul and I have collected over the last few months and uploaded some of the more interesting ones to a Picasa web album.  The pictures are generally in chronological order and cover most of the construction process from November of 2010 right up to the end of March 2011.  A link to our our video of a Statnamic load test at Hastings that Aaron blogged about is here.