Tag Archives: Deep Foundations

Replacing the 89 Year Old Sellwood Bridge

DBA has had the pleasure of working with T.Y. Lin and SlaydenSundt JV in their effort to replace the Sellwood Bridge over the Willamette River in Multnomah County, Oregon, near Portland. Designed by Gustav Lindenthal, the existing Sellwood Bridge was constructed in 1925 to replace the Spokane Street Ferry, connecting the communities of Sellwood and West Portland.  In response to budget issues at the time, the Sellwood Bridge design was scaled back to minimize costs. Fast forward to 2014 and the existing Sellwood Bridge is now the only four-span continuous truss highway bridge in Oregon and possibly the nation. The bridge is extremely narrow, two lanes, no shoulder or median, and one small 4-ft sidewalk.  In addition to these shortcomings in design with respect to the modern age, the west end of the bridge was constructed on fill, and the hillside above the bridge is now slowly sliding toward the river. Ground movements have caused some of the girders to crack. Furthermore, the existing bridge was not designed to any seismic standards which present a major concern given the bridge’s location in the seismically active Pacific Northwest.

The new Sellwood Bridge will be a deck arch structure with three arches supporting the deck of the main river spans and is designed to the latest seismic standards. It will feature two 12-ft travel lanes, two-12 ft shared use sidewalks, and two 6.5-ft bike lane/emergency shoulders. Multnomah County is using the existing bridge truss on temporary pile foundations as a detour to save time and money during construction with minimal impact to traffic, people can always get quick loans without credit check process at any time if they have financial problems. According to www.cyclonebuildings.com, the original bridge truss was shifted on January 19, 2013. Complicating the move was the enormity of the bridge, an 1100-ft single truss weighing 3400 tons. In addition to the size and weight of the span, old age and its curved alignment added to the technical challenges. The impressive move took only 14 hours.  The detour bridge is currently fully operational and will continue to carry traffic until the summer of 2015 when the new bridge is scheduled to open.

DBA played key roles in the design and construction of the main arch piers. As part of the VE Design, DBA assumed engineering responsibility for the 10-ft diameter drilled shafts supporting Piers 4, 5, and 6 (4 & 5 being in the river and 6 on the eastern shore).  The lengths of these shafts ranged from 81 ft to 225 ft through a number of subsurface conditions which posed many challenges to construction. Subsurface conditions ranged from large loose cobbles/gravel (Catastrophic Flood Deposits) to cemented cobbles and gravel (Troutdale Formation), to very hard intact basalt bedrock. Due to the challenging geologic conditions and variability of these conditions across the site, DBA implemented an observational method in which the final shaft length determination was made on the basis of our on-site observations in relation to a set of predefined criteria. This approach provided the necessary flexibility to efficiently confront different subsurface conditions in a timely manner. Drilling subcontractor Malcolm Drilling successfully completed construction of the last of these shafts in mid-October 2013.

You can learn more about the bridge and the project at Multnomah County’s website, SellwoodBridge.org. The website has current field work updates, photo gallery, history of the project, and a live construction camera with daily, weekly, and monthly time-lapse videos.  There is also a time-lapse of the moving of the old truss.

written by Nathan Glinski, edited by David Graham

Drilled Shafts Complete at St Croix

Pier 9 FootingAs reported by the Minneapolis Star Tribune, Case Foundation recently finished constructing 40 drilled shafts at the St Croix River Crossing Project.  Since early June, Case has been working at a feverish pace to construct the drilled shaft foundations for the new extradosed bridge between Minnesota and Wisconsin.  As of November 8th, all of the drilled shafts are officially complete.  General contractor Kramer is working to finish the pier footings and support tower bases by early 2014.  Soon, the joint venture of Lunda and Ames will begin construction of the $380 million bridge superstructure.

As MnDOT’s foundation consultant for the project, DBA has been on site during much of the foundation construction over the past five months.  Some pictures taken during this time, along with several pictures from MnDOT are available for viewing on our Picasa Page.  More pictures and information can be found on the project website and Facebook Page, and the project can be viewed live via webcam.  Previous DBA blog posts about the main project and the predesign load test program can be found here.

DBA is pleased to wrap up its role on the St Croix Crossing Project with a very positive outlook.  The drilled shaft construction proceeded on schedule and as planned without unexpected challenges, and our strong client relationships with MnDOT continued to grow stronger.  It was also nice to see familar faces from Case, Braun Intertec, and Parsons Transportation Group, many of whom we worked with us at Hastings.  We very much look forward to working with these partners again in the future!

Leo Frigo Bridge–Corroded Piling

Image: From GreenBayPressGazette.com

Early indications are that the settlement of the pier at the Leo Frigo Bridge in Green Bay, Wisconsin is the result of corrosion of the piling that supports the pier.  Randy Post over at Geoprac.net  has a post up with video and a link to this story in the Green Bay Gazette Press.  From the story:

Corrosion of steel pilings below a support pier on the Leo Frigo Memorial Bridge in Green Bay caused Pier 22 to buckle last week, creating a long, deep dip in the bridge deck and forcing the bridge’s indefinite closure.

The 100-foot-long pilings under the pier were degraded from a combination of water and the composition of soil surrounding the bridge support, Wisconsin Department of Transportation officials said Thursday.

It appears that the suspect piers are in an area of fill, the composition of which may be contributing to the corrosion of the piles:

The investigation is focused on the area from the Fox River east to North Quincy Street on the east side of the bridge, where fill materials like foundry sand and organic materials are part of the soil profile.

“We’ve encountered all kinds of different things,” Buchholz said about soil samples in that area.

In addition to investigating the cause of the settlement of the pier, the bridge has been inspected by the Wisconsin DOT and is not in danger of collapse.  As a precaution, the bridge remains closed during the investigation.

DBA Engineers Coauthor Cover Story of Latest DFI Magazine

http://danbrownandassociates.com/wp-content/uploads/2013/08/DFI-Cover-July-Aug-2013_small.jpg

Cover Image of the Hastings Mississippi River Arch Bridge

The featured article in the July/August 2013 issue of Deep Foundations, the magazine of the Deep Foundations Institute, is coauthored by Dan, Paul, and Rich Lamb, P.E., of the Minnesota Department of Transportation (MnDOT).  The article summarizes how load testing has been used successfully as part of the foundation design process by DBA and MnDOT on five major bridge projects along the Mississippi and St. Croix Rivers during the last 10 years and the lessons learned from these successive projects.   The featured bridge projects include two major design-build projects, the emergency replacement of the I-35W St. Anthony Falls Bridge (2007) and the Hastings Mississippi River Arch Bridge (2011).  The other traditional design-bid-build projects include the I-494 Wakota Mississippi River Bridge, the U.S. Hwy 52 Lafayette Mississippi River Bridge, and the St Croix River Bridge.  As is often the case, each of these projects presented unique geological and hydrogeological challenges to foundation design – despite the projects all being within 30 miles of each other – including thick layers of highly organic compressible soils overlying bedrock, layers of cobbles and boulders, artesian groundwater conditions, and bedrock ranging from weak weathered sandstone to very hard dolostone.  These varying conditions resulted in the use and testing of a variety of foundations.  Load testing “with a purpose” has proven to be an integral part of the design and construction process on these projects, as the load tests were not simply for verification of a design but provided valuable information used to optimize the designs and provide quality assurance of the construction practices.

Please read the full article here or in a copy of Deep Foundations, a bi-monthly magazine published by the Deep Foundations Institute.   DFI is an international technical association of firms and individuals involved in the deep foundations and related industry.  More information about DFI and how to become a member can be found at www.dfi.org.

Also see our Projects Page for more about some of these projects and our other major projects.

St. Croix Bridge Construction Starts with Official Groundbreaking

St Croix Aerial Rendering

Earlier this week, officials from the Minnesota and Wisconsin departments of transportation (MnDOT and WisDOT) met for an official groundbreaking ceremony on the projected $629 million bridge and highway project that will connect Oak Park Heights, Minnesota, to St. Joseph, Wisconsin, just south of Stillwater, Minnesota, as highlighted in yesterday’s edition of The Minneapolis St. Paul Business Journal.  The new bridge will replace the 80-year-old Stillwater Lift Bridge and relieve traffic congestion in nearby Stillwater.

DBA has been retained by MnDOT as the lead geotechnical consultant and foundation designer for the extradosed river bridge.  Last summer, DBA aided MnDOT in the design and oversight of a load test program described in my blog post, “DBA Wraps Up Load Test Program and Proceeds with Design on St. Croix Bridge.”  Following final design, which took place over the fall and winter, construction of the foundations will begin next week with the installation of a technique shaft.  DBA will participate in construction as well, providing construction observation and review of the technique shaft and at least one shaft at each of the five production piers.  Edward Kraemer & Sons, Inc. of Plain, Wisconsin, has been selected as the general contractor for the foundation contract with sub-contractor Case Foundation Company of Chicago, Illinois, performing the drilling.  The extradosed bridge will feature five main river towers, each resting on two footings supported by a 4-shaft group of 8.5-foot drilled shafts, socketed 25-feet or more into sandstone bedrock.

I hope to have some more updates soon with some pictures following my upcoming site visits to observe the construction operations.  In the mean time, you can stay updated by visiting the MnDOT project page and watching the “action” live via the construction webcam.

Deep Foundations Research

image      image

In the course of digging throughout the internet for data and information for a couple of projects using one of the best wifi routers, I came across some (relatively) recent research reports geared toward improving design of driven piles based on field testing.  A report from The Illinois Center for Transportation at the University of Illinois at Urbana-Champaign is focused on improving pile design through increased resistance factors and nominal bearing values.  A project by the Institute for Transportation at Iowa State University focuses on developing LRFD design procedures for steel piles in Iowa. It was published in two volumes, with Volume I covering the development of LRFD calibrations and a load test database, and Volume II covering field load tests performed for the project.

I have not had time to dig into them yet, so I just offer the links and abstracts to pique your curiosity.  Perhaps you may find something interesting in them, or maybe something applicable to a project.  There is a lot of research going on out there for TRB and NHI, so I figure sharing interesting tidbits helps get things circulated.

Click on the name of each of the research centers above to find out what other things they are doing, available reports, etc.

 

Improved Design for Driven Piles on a Load Test Program in Illinois, Research Report FHWA-ICT-12-011, Illinois Center for Transportation, University of Illinois at Urbana-Champaign, July 2012 (Authors: Jim Long and Andrew Anderson, )

Abstract:

Dynamic pile testing and one static load test was performed in accordance with ICT project R27-69, “Improved Design for Driven Piles Based on a Pile Load Test Program in Illinois.” The objectives of this project are to (1) increase the maximum nominal required bearing that designers can specify to reduce the number and/or weight of piles, (2) decrease the difference between estimated and driven pile lengths to reduce cutoffs and splice lengths by development of local bias factors for predictive methods used in design, (3) increase reliance of pile setup to increase the factored resistance available to designers, (4) reduce the risk of pile driving damage during construction, and (5) increase the resistance factor (decrease in factor of safety) based on increased data and confidence from load tests in and near Illinois. Project deliverables can be categorized as (1) better prediction methods for stresses during driving, (2) better prediction methods for pile capacities using resistance factors for driven piling based on local calibrations that consider the effects of pile setups, and (3) collections of static and dynamic load test data focused on Illinois soils and geology.

 

 

Development of LRFD Procedures for Bridge Piles in Iowa, Volume I: An Electronic Database for PIle LOad Tests (PILOT) (Volume I), Institute for Transportation at Iowa State University, January 2011 (Authors: Matthew Roling, Sri Sritharan, Muhannad T. Suleiman)

Abstract:

For well over 100 years, the Working Stress Design (WSD) approach has been the traditional basis for geotechnical design with regard to settlements or failure conditions. However, considerable effort has been put forth over the past couple of decades in relation to the adoption of the Load and Resistance Factor Design (LRFD) approach into geotechnical design. With the goal of producing engineered designs with consistent levels of reliability, the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000, requiring all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. Likewise, regionally calibrated LRFD resistance factors were permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy of bridge foundation elements. Thus, projects TR-573, TR-583 and TR-584 were undertaken by a research team at Iowa State University’s Bridge Engineering Center with the goal of developing resistance factors for pile design using available pile static load test data. To accomplish this goal, the available data were first analyzed for reliability and then placed in a newly designed relational database management system termed PIle LOad Tests (PILOT), to which this first volume of the final report for project TR-573 is dedicated. PILOT is an amalgamated, electronic source of information consisting of both static and dynamic data for pile load tests conducted in the State of Iowa. The database, which includes historical data on pile load tests dating back to 1966, is intended for use in the establishment of LRFD resistance factors for design and construction control of driven pile foundations in Iowa. Although a considerable amount of geotechnical and pile load test data is available in literature as well as in various State Department of Transportation files, PILOT is one of the first regional databases to be exclusively used in the development of LRFD resistance factors for the design and construction control of driven pile foundations. Currently providing an electronically organized assimilation of geotechnical and pile load test data for 274 piles of various types (e.g., steel H-shaped, timber, pipe, Monotube, and concrete), PILOT (http://srg.cce.iastate.edu/lrfd/) is on par with such familiar national databases used in the calibration of LRFD resistance factors for pile foundations as the FHWA’s Deep Foundation Load Test Database. By narrowing geographical boundaries while maintaining a high number of pile load tests, PILOT exemplifies a model for effective regional LRFD calibration procedures.

 

 

Development of LRFD Procedures for Bridge Piles in Iowa, Field Testing of Steel H-Piles in Clay, Sand, and Mixed Soils and Data Analysis (Volume II), Institute for Transportation at Iowa State University, September 2011 (Authors: Kam Weng Ng, Muhannad T. Suleiman, Matthew Roling, Sherif S. AbdelSalam, and Sri Sritharan)

Abstract:

In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured loaddisplacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD

ENR’s Best of the Best 2012–Audubon Bridge

ENR Logo

 

The John James Audubon Bridge was recently selected as the Editor’s Choice/Transportation for ENR’s Best of the Best Projects for 2012.  The annual competition culminated in honoring ENR’s selection of the most outstanding construction projects in the U.s. And Puerto Rico complete between July 2011 and June 2012.

Nearly 1,000 project teams submitted their best work to ENR’s regional "Best Projects" competitions. For each of the nine regions, our editors assembled an independent panel of industry judges to home in on the winners in 19 categories. The winners of the regional contests moved on to the national competition. A different set of industry judges examined the projects to distinguish the "Best of the Best" in teamwork, success in overcoming challenges, innovation and quality. This year, a new award honors the safest project, judged by industry safety experts in both the regional and national competitions. Also, ENR’s editorial staff chose one special project as the "Editors’ Choice" to represent the pinnacle of design and construction excellence.

The Audubon Bridge won the Editor’s Choice – the editorial staff’s selection of the “pinnacle of design and construction excellence”.  Congratulations to everyone at Audubon Bridge Constructors (Flatiron, Granite and Parsons), Louisiana DOTD, and all who worked on the project!

Regular readers of our blog will be very familiar with the JJA as we often called it.   You can catch all of the geotechnical and foundation highlights on our project page, or check out previous posts.

Images from: ENR.com

Deep Foundations Discussions on GeoWorld and LinkedIn

The world of social media or on-line networking sites continues to grow.  Some of the sites offer opportunities for industry groups or committees to have groups that provide a place for discussion on specific topics relevant to the group or committee.  DBA staff members are active on many technical committees in the Geo-Institute, DFI, PDCA, and ADSC. The G-I Deep Foundations Committee has Groups on both GeoWorld and LinkedIn open for anyone to join – not just committee members.

GeoWorld is the online professional networking site for geotechnical engineers and associated fields.  It was launched last year and is growing.  If you aren’t a member, click here to join.  Once you join you will find all sorts of groups and other avenues for networking within the geoengineering community, including a group for the DFC (look for Technical Committees in the Groups area). Or just click the icon below to go to the group.

LinkedIn (as many of you already know!) is a social media site for all professions, providing networking opportunities for many purposes (industry news, technical advice, job seeking, keeping up with colleagues, etc.) .  To find the DFC group, click on the icon below.

In addition to the G-I DFC, the DFI and the ADSC have groups on LinkedIn – go there by clicking on the logos below:

Check out these and other groups – join a discussion, or start your own!

Huey P. Long Bridge Designated ASCE Civil Engineering Landmark

Photo Credit: Eliot Kamenitz, The Times-Picayune archive (via NOLA.com)

The Huey P. Long Bridge over the Mississippi River in New Orleans was recently designated a National Civil Engineering Landmark by the American Society of Civil Engineers. From NOLA.com (via ASCE SmartBrief):

Representatives with the Society of Civil Engineers, including national president Andrew Herrmann, along with state Transportation Secretary Sherri LeBas are expected to attend. They will place a plaque on the bridge, distinguishing it as one of 250 such historic landmarks around the world. The honor places the Depression-era built bridge in the company of the Eiffel Tower, the Panama Canal, the Hoover Dam and the U.S. Capitol.

The $1.2 Billion bridge improvement project is one of several being managed by the Louisiana TIMED Program:

The TIMED (Transportation Infrastructure Model for Economic Development) Program is the single largest transportation program in state history. The TIMED Program was created by Act 16 of the 1989 Louisiana Legislature and was voted for by the people. The $5 billion improvement program includes widening 536 miles of state highways to four lanes on 11 project corridors, widening and/or new construction on three major bridges and improvements to both the Port of New Orleans and Louis Armstrong International Airport. The Program is designed to enhance economic development in Louisiana through an investment in transportation projects.

DBA was involved in the test shaft and base grouting program for the drilled shafts supporting the new pier added to supplement the existing piers of the bridge.  Check out previous posts here.