Tag Archives: Bridge Foundations

Replacing the 89 Year Old Sellwood Bridge

DBA has had the pleasure of working with T.Y. Lin and SlaydenSundt JV in their effort to replace the Sellwood Bridge over the Willamette River in Multnomah County, Oregon, near Portland. Designed by Gustav Lindenthal, the existing Sellwood Bridge was constructed in 1925 to replace the Spokane Street Ferry, connecting the communities of Sellwood and West Portland.  In response to budget issues at the time, the Sellwood Bridge design was scaled back to minimize costs. Fast forward to 2014 and the existing Sellwood Bridge is now the only four-span continuous truss highway bridge in Oregon and possibly the nation. The bridge is extremely narrow, two lanes, no shoulder or median, and one small 4-ft sidewalk.  In addition to these shortcomings in design with respect to the modern age, the west end of the bridge was constructed on fill, and the hillside above the bridge is now slowly sliding toward the river. Ground movements have caused some of the girders to crack. Furthermore, the existing bridge was not designed to any seismic standards which present a major concern given the bridge’s location in the seismically active Pacific Northwest.

The new Sellwood Bridge will be a deck arch structure with three arches supporting the deck of the main river spans and is designed to the latest seismic standards. It will feature two 12-ft travel lanes, two-12 ft shared use sidewalks, and two 6.5-ft bike lane/emergency shoulders. Multnomah County is using the existing bridge truss on temporary pile foundations as a detour to save time and money during construction with minimal impact to traffic, people can always get quick loans without credit check process at any time if they have financial problems. According to www.cyclonebuildings.com, the original bridge truss was shifted on January 19, 2013. Complicating the move was the enormity of the bridge, an 1100-ft single truss weighing 3400 tons. In addition to the size and weight of the span, old age and its curved alignment added to the technical challenges. The impressive move took only 14 hours.  The detour bridge is currently fully operational and will continue to carry traffic until the summer of 2015 when the new bridge is scheduled to open.

DBA played key roles in the design and construction of the main arch piers. As part of the VE Design, DBA assumed engineering responsibility for the 10-ft diameter drilled shafts supporting Piers 4, 5, and 6 (4 & 5 being in the river and 6 on the eastern shore).  The lengths of these shafts ranged from 81 ft to 225 ft through a number of subsurface conditions which posed many challenges to construction. Subsurface conditions ranged from large loose cobbles/gravel (Catastrophic Flood Deposits) to cemented cobbles and gravel (Troutdale Formation), to very hard intact basalt bedrock. Due to the challenging geologic conditions and variability of these conditions across the site, DBA implemented an observational method in which the final shaft length determination was made on the basis of our on-site observations in relation to a set of predefined criteria. This approach provided the necessary flexibility to efficiently confront different subsurface conditions in a timely manner. Drilling subcontractor Malcolm Drilling successfully completed construction of the last of these shafts in mid-October 2013.

You can learn more about the bridge and the project at Multnomah County’s website, SellwoodBridge.org. The website has current field work updates, photo gallery, history of the project, and a live construction camera with daily, weekly, and monthly time-lapse videos.  There is also a time-lapse of the moving of the old truss.

written by Nathan Glinski, edited by David Graham

Bubble Curtain for Driving Piles at Tappan Zee

TZ curtain_lohud

Image source: lohud.com

The design-build team Tappan Zee Constructors that is building the Tappan Zee Bridge is installing the over 200-ft long steel pipe piles using a relatively simple concept to mitigate vibration impacts on fish – a bubble curtain.  Such curtains have become more common as an approach to mitigate potential impacts (pardon the pun) on aquatic life when large piles are driven over water.  The vibrations from the hammer impact on the pile during driving are reduced or dampened by a curtain of bubbles generated around the pile by compressed air.  An item in the December 26th ASCE Smart Brief linked an article in The Journal News (White Plains, NY) highlighting the use of the curtain on the Tappan Zee project.

 

A rubber-looking sleeve covered the hammer where it met the pile, dampening some of the noise in the air. Underwater, however, it was a curtain of bubbles serving as the aquatic equivalent of earplugs for fish and other creatures in the Hudson River.

Aluminum rings are slid over the pilings like the rings on a shower curtain rod before any banging starts. Air pumped into the rings produces a sheath of bubbles in the water around the pile. The froth generated in the water is called a bubble curtain.

“Bubble curtains are designed to protect the fish in the area from the noise generated by the hammer impact below the water level,” said Walter Reichert, project manager for Tappan Zee Constructors. “This divides the water into basically two sections. It greatly reduces the sound waves.”

Check out the article for some neat pictures and a cool video about the process (with hammer sounds!).  Here is a small picture gallery from lohud.com.

Raising the Leo Frigo Bridge

Work to begin lifting the sagging portions of the Leo Frigo Memorial Bridge on I-43 in Green Bay, Wisconsin is scheduled to begin Tuesday.  According to the Green Bay Press Gazette,  Zenith Tech Inc. is working on the repairs.  It will be a BIG lift, indeed…..

Raising the troubled Leo Frigo Memorial Bridge back into place will be a task equivalent to hoisting an entire fleet of 747s into the air.

Experts have calculated that the sagging section of Green Bay’s distressed bridge weighs more than 3 million pounds, or about 1,600 tons.

……

Zenith Tech crews are expected to spend several days using hydraulic jacks to boost the Leo Frigo back into position — a process that will go slow, by design.

……

Starting with the northbound lanes, Zenith Tech will insert 10 hydraulic jacks beneath the bridge deck and operate them all simultaneously to raise the platform. Each jack will be exerting enough pressure to support 183,000 pounds, although Dreher said their capacity is 50 percent greater than that — just in case it is needed.

Dreher said the jacks will be calibrated carefully to operate in perfect unison, so there is no risk of the bridge deck leaning one way or the other as it is elevated.

“You can’t just go in there and start jacking away,” he said. “It definitely takes some coordination and good communication.

A very challenging and interesting repair project.  Kudos to the Wisconsin DOT and all involved in getting the repairs done quickly.

See our previous posts here.

Leo Frigo Bridge–Repair Design

The Wisconsin DOT was set to request bids this week for repairs to the Leo Frigo Memorial Bridge on I-43 in Green Bay, with an anticipated start of construction on November 4th and reopening of the bridge on January 17th.  The repair will consist of using drilled shafts installed adjacent to the existing piers with a post-tensioned extension of the pile cap to transfer the loads to the shafts.  A schematic of the design from Wisconsin DOT (via Milwaukee Wisconsin Journal Sentinel)

Scot Becker, director of the Bureau of Structures and the state’s bridge engineer, said the fix will consist of installing four concrete shafts beneath five affected piers to take over support from corroded underground steel structures, called pilings. Then, the bridge itself will be jacked up 2 feet, and concrete and steel will be poured to keep the bridge in position.

The bridge, which spans the Fox River in Green Bay, has been closed since late September, after pilings became corroded and buckled under one of the piers, causing a 400-foot-long section of the bridge to sink 2 feet. Since then, it has drooped another half inch, and the state is monitoring the bridge for further movement.

An investigation concentrating mainly in the area from Quincy St. to the Fox River found that soil surrounding the pier contained industrial byproducts over wetlands, which caused the corrosion.

Temporary supports are already being installed by Lunda to shore up the sagging spans until the repairs can be completed.

The Green Bay Press Gazette has a page archiving all of their stories, videos, photos, etc. concerning this event.

http://media.jrn.com/images/LEOFRIG23GRevise.jpg

Leo Frigo Bridge–Corroded Piling

Image: From GreenBayPressGazette.com

Early indications are that the settlement of the pier at the Leo Frigo Bridge in Green Bay, Wisconsin is the result of corrosion of the piling that supports the pier.  Randy Post over at Geoprac.net  has a post up with video and a link to this story in the Green Bay Gazette Press.  From the story:

Corrosion of steel pilings below a support pier on the Leo Frigo Memorial Bridge in Green Bay caused Pier 22 to buckle last week, creating a long, deep dip in the bridge deck and forcing the bridge’s indefinite closure.

The 100-foot-long pilings under the pier were degraded from a combination of water and the composition of soil surrounding the bridge support, Wisconsin Department of Transportation officials said Thursday.

It appears that the suspect piers are in an area of fill, the composition of which may be contributing to the corrosion of the piles:

The investigation is focused on the area from the Fox River east to North Quincy Street on the east side of the bridge, where fill materials like foundry sand and organic materials are part of the soil profile.

“We’ve encountered all kinds of different things,” Buchholz said about soil samples in that area.

In addition to investigating the cause of the settlement of the pier, the bridge has been inspected by the Wisconsin DOT and is not in danger of collapse.  As a precaution, the bridge remains closed during the investigation.

Leo Frigo Memorial Bridge, Wisconsin–Foundation Failure???

Picture Source: nbcchicago.com

While several of the DBA staff were at the DFI 38th Annual Conference on Deep Foundations last week, we received texts and calls from colleagues wondering if we had been called about the apparent foundation failure at the Leo Frigo Memorial Bridge in Green Bay, Wisconsin.  As of now, DBA has not been asked to be involved with the evaluation.  The Wisconsin DOT is currently investigating.  Our friend, Randy Post over at Geoprac.net has a post on the event, including a CNN video report that also recounts some other more dramatic bridge failures that were NOT due to foundation failures.

This bridge was built in 1980 and the “failure” is limited to a single pier that has subsided or settled a couple of feet in a rather sudden manner.

The Green Bay Press Gazette has this article with some video.  There is also an article noting that a petroleum pipeline is near the subject pier.

Actual failures of a foundation are rare, so if this is such a case, this will make a very interesting case history once the cause is determined.  Stay tuned for more developments.

Missouri Bridge Project Updates–Hurricane Deck and MRB

Time for a quick update on two projects owned by MoDOT on which DBA was involved.

First, the official opening of the Missouri Route 5 – Hurricane Deck Bridge Replacement was held on September 7th.

Hurricane Deck

History was made on Sept. 7, 2013when state and local officials cut the ribbon on the new Hurricane Deck Bridge during a ceremony held in the center of the new structure.  The bridge officially opened to traffic in the late evening on Monday, Sept. 9. The original bridge is now closed and will be prepared for demolition during the remainder of 2013. Final demolition will take place in the spring of 2014.

Check out this time lapse video of the bridge being built.

 

Last, the new Mississippi River Bridge in St. Louis.

Clipboard01

They have closed the gap on the bridge – lots of neat photos here showing the final deck panels in place.  Here they are placing the final edge girders.  Finally, here is a link to the live construction cameras.

DBA Engineers Coauthor Cover Story of Latest DFI Magazine

https://danbrownandassociates.com/wp-content/uploads/2013/08/DFI-Cover-July-Aug-2013_small.jpg

Cover Image of the Hastings Mississippi River Arch Bridge

The featured article in the July/August 2013 issue of Deep Foundations, the magazine of the Deep Foundations Institute, is coauthored by Dan, Paul, and Rich Lamb, P.E., of the Minnesota Department of Transportation (MnDOT).  The article summarizes how load testing has been used successfully as part of the foundation design process by DBA and MnDOT on five major bridge projects along the Mississippi and St. Croix Rivers during the last 10 years and the lessons learned from these successive projects.   The featured bridge projects include two major design-build projects, the emergency replacement of the I-35W St. Anthony Falls Bridge (2007) and the Hastings Mississippi River Arch Bridge (2011).  The other traditional design-bid-build projects include the I-494 Wakota Mississippi River Bridge, the U.S. Hwy 52 Lafayette Mississippi River Bridge, and the St Croix River Bridge.  As is often the case, each of these projects presented unique geological and hydrogeological challenges to foundation design – despite the projects all being within 30 miles of each other – including thick layers of highly organic compressible soils overlying bedrock, layers of cobbles and boulders, artesian groundwater conditions, and bedrock ranging from weak weathered sandstone to very hard dolostone.  These varying conditions resulted in the use and testing of a variety of foundations.  Load testing “with a purpose” has proven to be an integral part of the design and construction process on these projects, as the load tests were not simply for verification of a design but provided valuable information used to optimize the designs and provide quality assurance of the construction practices.

Please read the full article here or in a copy of Deep Foundations, a bi-monthly magazine published by the Deep Foundations Institute.   DFI is an international technical association of firms and individuals involved in the deep foundations and related industry.  More information about DFI and how to become a member can be found at www.dfi.org.

Also see our Projects Page for more about some of these projects and our other major projects.

West 7th Street Bridge–Fort Worth, TX–Arches Update

The West 7th Street Bridge in Fort Worth, Texas was closed on June 7th so that Sundt Construction could start demolishing the existing bridge.  Sundt set all of the arches for the world’s first pre-cast network arch bridge according to TxDOT.

The W. 7th Street bridge is a gateway between downtown Fort Worth and its cultural district.  TxDOT designed the bridge with six arch spans across the Trinity River to improve safety, pedestrian access and add to the architectural redevelopment under way in this corridor. The project will widen and reconstruct the four-lane bridge with 10-foot sidewalks.  It is the world’s first pre-cast network arch bridge.

ENR had an article in early June about the unique bridge (requires subscription to ENR):

http://enr.construction.com/infrastructure/transportation/2013/0603-builders-say-precast-concrete-network-arch-bridge-is-a-first.asp

DBA provided Sundt with some construction support related to the heavy lift cranes for the arch picks.  I previously wrote about it here.

In late May, Cade Redig of Sundt sent me a few photos of the progress.  Take a look and enjoy!

 

 

View from existing bridge deck with placed arches on either side

View from existing bridge deck with arches on either side

7th St Bridge 5-22-13 017

Crane with arch

130514787

Aerial view

Hastings Bridge Opens to Traffic

Looking north towards Hastings as traffic travels on both bridges

Looking west from the Hastings’ river bank

I had the unique opportunity to be among the first people to cross the new Hastings bridge and among the last to cross the old Hastings bridge, during the short period of time when the two bridges were simultaneously carrying traffic.

Yesterday evening, Monday, June 3rd, crews shifted southbound traffic onto the new bridge for the first time.  This evening, the old bridge will be closed to traffic for good as crews shift northbound traffic onto the new bridge.  According to the Minneapolis Star Tribune, there will be a funeral service of sorts for the 1950’s era truss bridge tonight, complete with a bagpiper and hearse.

Being just up the road for the St. Croix Bridge Project, I took the opportunity to travel across both bridges today and take a few pictures like the ones above.   It is not every day that we, as foundation designers, get a chance to see this stage of a project.  Luckily, I was in the right place at the right time.