Category Archives: Load Testing

DBA Wraps Up Load Test Program and Proceeds with Design on St. Croix Bridge

Project rendering courtesy of HDR 

Lateral Statnamic test, picture by David Graham of DBA, click here for a YouTube video

DBA has been selected by MnDOT as a geotechnical and load testing consultant for the design phase load test program and foundation design of a new bridge crossing the the St. Croix River near Oak Park Heights and Stillwater, Minnesota. The new bridge will carry State Highway 36 across the St. Croix River between Minnesota and Wisconsin. Currently, Highway 36 is carried on an 80-year old two-lane vertical lift bridge in downtown Stillwater.  The new bridge will divert the heavy through traffic away from the historic downtown center and reduce travel time for commuters.  The iconic lift bridge will be converted to a pedestrian and bicycle only structure.

Work began this summer on the load test program which consisted of one 8-foot test shaft, two 24-inch driven steel pipe piles, and two 42-inch driven steel pipe piles, all installed in the St. Croix River along the alignment of the new bridge.  Local contractor Carl Bolander & Sons Co. was selected as the general contractor for the load testing program.  Bolander self-performed the installation of the test piles and sub-contracted the construction of the test shaft to Case Foundation Company, of Chicago, Illinois.  Axial load testing of the test shaft was performed by Loadtest, Inc., of Gainesville, Florida, using Osterberg Cells (O-cells).  Dynamic testing of the driven piles using the pile driving analyzer (PDA) was performed by local geotechnical consultant Braun Intertec.  Axial testing of the driven piles and lateral testing of the shaft and one of each size pile was performed using the Statnamic Device by Applied Foundation Testing, Inc. (AFT), of Jacksonville, Florida.  DBA provided pre-test recommendations, assisted MnDOT in construction oversight, provided analysis and review of the test results, and made design recommendations based on the test results.

Following the successful load test program, DBA is working with MnDOT’s structural design consultants for the project, HDR, Inc. and Buckland & Taylor Ltd.  to optimize the bridge design.  Already, the design team has been able to lengthen the bridge spans and eliminate a river pier as a result of the load test results, as was recently reported by Minnesota Public Radio (MPR).  Also, because the total number of drilled shafts required to support the main pier towers has been reduced, construction on the foundations will been moved up to 2013 rather than the original estimated start date in 2014, also reported by MPR.

For more information, please see:

The MnDOT Project Page

The DBA Project Summary Sheet

Busy Fall Speaking Schedule for DBA

The months of September and October will be busy for several DBA team members speaking at a variety of conferences and events. Dan Brown and John Turner will be speaking at the ADSC/DFI Drilled Shaft Seminar and Field Day in Denver September 12 and 13. Dan will be giving the 4th Annual Osterberg Memorial Lecture at the DFI Educational Trust dinner being held on the evening of the 12th. Dan and John will be speaking mostly on construction issues during the seminar.   

 

MWGC logoLater in the month, Dan and Robert Thompson are both featured at the 2012 Midwest Geotechnical Conference hosted by Ohio DOT in Columbus, Ohio. Dan will be speaking on base grouted shafts while Robert will give his presentation on the ADSC SE Chapter rock socket load test research program.     

 

STGEC 2012In October, Dan and Robert appear together again at the 2012 Southeastern Transportation Geotechnical Engineering Conference (STGEC) in Richmond, Virginia. This will be the 43rd installment of this conference, hosted this year by the Virginia DOT. Dan will speak on design-build construction issues for deep foundations, while Robert will again present the load test research project. Dan will also speak at the 26th Central Pennsylvania Geotechnical Conference in Hershey, Pennsylvania in October, and Robert will speak at the ADSC Carolinas Chapter meeting in Greenville, NC.

Mike Holloway SuperPile 2012 Presentation

DSCN2543We have added Mike Holloway’s presentation at DFI SuperPile 2012 on May 17, 2012 to our Presentations Page.  Mike discussed some of the issues related to pile testing and what can influence the blow counts that are often relied upon to accept piles.  He covered the types of testing, limitations of various methods, and issues to consider when applying test results to production piling.

A Driven Pile is a Tested Pile – Not So Fast! – D. Michael Holloway, Ph.D., P.E. – DFI SuperPile 2012, Portland, OR, May 17, 2012

Early Statnamic Lateral Load Test Paper by Dan

While at the 2012 Geo-Congress I purchased a couple of books at the ASCE bookstore.  One was GSP 88: Analysis, Design, Construction and Testing of Deep Foundations, Proceedings of the OTRC ‘99 Conference. There are several interesting papers in the GSP, including an early paper by Dan on lateral Statnamic testing.  A full scale lateral load test was performed on a 36 inch tests shaft using a Statnamic device.  The test was performed at the Auburn University National Geotechnical Experiment Station Site (NGES).  I guess you could say this paper is literally a “blast” from the past!

 

Brown, D.A. (1999). “An Experiment with Statnamic Lateral Loading of a Drilled Shaft”, Geotechnical Special Publication No. 88: Analysis, Design, Construction and Testing of Deep Foundations, Proceedings of the OTRC ‘99 Conference, Austin, Texas, April 29-30, 1999, ASCE, pp309-318.

Hyperbolic P-Y Model from Lateral Load Tests in Loess Soils

Another paper featured in the December 2011 issue of the DFI Journal was authored by Steve and Dan, along with Dr. Bob Parsons at the University of Kansas

Dapp, S.D., Brown, D.A., and Parsons, R.L. (2011). “Hyperbolic P-Y Model for Static and Cyclic Lateral Loading Derived from Full-Scale Lateral Load Tesing in Cemented Loess Soils”, DFI Journal Volume 5, Number 2, December 2011, Deep Foundations Institute, pp35-43.

The paper describes a program of lateral load tests on six drilled shafts installed in a loess deposit at a site in Wyandotte County, Kansas.  The lateral load test data, along with site characterization data that included CPT data, were used to develop a hyperbolic model to generate p-y curves for use in lateral load analyses in cemented soils.  The model should be applicable to many “c-phi” soils (soils with both a cohesion intercept and a friction angle, such as cemented soils).  Degradation of the static soil model to account for cyclic loading effects is included in the new model.

This paper was originally published in the DFI Journal, Vol. 5 No. 2, December 2011, the bi-annual Journal of the Deep Foundations Institute.  DFI is an international technical association of firms and individuals involved in the deep foundations and related industry. The DFI Journal is provided to DFI members at no cost electronically or can be purchased in print at www.dfi.org.

This paper is one of several papers and articles published form a series of research projects by KU and the Kansas DOT.  Some of the previous work can be found at these links:

Characterization of Loess for Deep Foundations (1/26/10)

Pierson, M., Parsons, R.L., Han, J., Brown, D.A. and Thompson, W.R. (2008). "Capacity of Laterally Loaded Shafts Constructed Behind the Face of a Mechanically Stabilized Earth Block Wall", Report for the Kansas Department of Transportation

Lateral load tests of drilled shafts behind an MSE wall – research with KDOT and KU (12/6/07)

ADSC SE Chapter Lawrenceville Test Site Report Published

Fig 12 - Test shaft 1 completedThe report for the ADSC Southeast Chapter Lawrenceville, Georgia Test Site is complete and published (link below).

This is the second report from their research project on rock-socketed drilled shafts in the Southeast U.S.  This report is from the Lawrenceville, Georgia test site where shafts constructed in metamorphic rock of the Piedmont geologic province were load tested using the O-Cell load test device.  The report link is below.  Additional information about the test site can be found at the Lawrenceville Site Page.

The first site of this project was in Nashville, Tennessee where shafts constructed in limestone were tested.  Information on the Nashville Site and the test reports can be found at the Nashville Site Page.

Both reports will be the feature of a paper and presentation by Robert at the 2012 ADSC Expo, March 13-17, in San Antonio, TX. More information about the Expo can be found here.

Thompson, W.R., Brown, D.A., and Hudson, A.B. (2012). “Load Testing of Drilled Shaft Foundations in Piedmont Rock, Lawrenceville, GA, Report for ADSC Southeast Chapter, January, 2012.

ADSC Lawrenceville Test Site–We Have Winners!

That’s right load test fans, The results are in! The ADSC Southeast Chapter is proud to announce the “winners” from the prediction contest for the Lawrenceville, GA test site. In the table below, we have listed the winner and their prediction. The winners are the closest to the average measured values as reported by Loadtest, Inc and may not represent the reported maximum values recommended in the final report by DBA. We won’t release the final report until the ASCE Georgia Section Geotechnical Group meeting November 15, 2011 at 6:30pm at the Georgia Power Company’s Headquarters in Atlanta. Dr. Brown will be presenting the findings then – so come to the meeting and get it first, or look to the DBA or ADSC web sites after November 15th to get the report.

 

Shaft

Name

Prediction

1 – Unit Base Resistance

Gloria Rodgers
(Building and Earth Sciences, Inc.)

750 ksf

1 – Unit Side Resistance

Todd Barber (Geo-Hydro Engineers, Inc.)

50 ksf

2 – Unit Base Resistance

Todd Barber (Geo-Hydro Engineers, Inc.)

690 ksf

2 – Unit Side Resistance

TIE:
Jim Pegues (Southern Company Svcs.)
Tom Scruggs (Georgia DOT)

3 ksf

ADSC Lawrenceville Test Site–Prediction Contest!

Update (7/31/11)Field Day set for Thursday, August 18th – More info here!

Back by popular demand, we will hold a prediction contest for the second test site in the ADSC drilled shaft research project for rock sockets in the Southeastern U.S.  Contestants are encouraged to download the information linked below and then submit their predictions of unit side resistance and base resistance that will be measured by the O-cell tests.  The winner will be announced at the field test and demonstration day on site, as well as published in this blog along with all submitted predictions.

Two test shafts will be installed July 26 – 29th at the yard of Foundation Technologies, Inc. One will include a rock socket to attempt to test side and base resistance in the rock socket.  The other shaft will be drilled to “rock auger refusal” to attempt to test side resistance in the partially weathered rock (locally termed PWR) and base resistance at “rock auger refusal”.  In the Piedmont area, the highly weathered upper rock zone is commonly called PWR.  Another common usage is “rock auger refusal” to define where “hard rock” begins.  It is thought that designers may be overly conservative with base resistance values at “rock auger refusal”.  Hopefully this test will provide useful data in that regard.

Testing will occur during a field demonstration day in mid-August. We’ll post the date once it is finalized.

Information to include the test shaft configurations and exploratory boring data can be downloaded here.

The contest entry form along with instructions for submission can be downloaded here.

We will have Aaron on site to observe and take lots of pictures.  We’ll post his photos of the excavations as soon as we can (check the project web page soon after August 1st) to assist in making predictions.

All predictions must be submitted by the close of business, August 12, 2011.

For more information, visit the test site page.

Previous posts.

ADSC Load Test Research – Lawrenceville, GA Site – SCHEDULE UPDATE

The planned second load test in the ADSC research project for rock sockets in the Southeastern U.S. is moving closer to execution.  Bruce Long of Long Foundation Drilling Company provides this update:

To Fellow Load Testers,

We want to thank everyone who submitted questions or comments regarding the preliminary load test program submitted to us by Dr. Dan Brown.  Those comments, and more, will be considered while fine-tuning the program.

Because we have several companies donating their time and money, we have to be flexible with respect to the installation and testing dates.  We have tentatively selected some dates, but these are subject to change depending upon the workloads of those volunteering their efforts.  We hope to begin shaft installation during the last two weeks of July (weeks beginning the 18th or 25th).  The actual load testing would probably take place the week of August 8th, with the actual test date being decided upon by sometime in early July (I hope to give everyone at least a 3-4 week notice). 

The actual test date would include a field day visit by all interested parties to the test site at Foundation Technologies office in Lawrenceville, GA.  Activities will include a load testing discussion led by Dr. Dan Brown, along with lunch.  We would then move to the test site where Loadtest, Inc. will be conducting the Osterberg Load Test on our first shaft.  A discussion of the testing process and procedures by Loadtest will precede the actual testing (We will be submitting information later regarding a load test contest where each of you will get to predict the outcome of the test with a special prize going to the winner).  We also hope to be drilling on the second shaft that day and will be discussing the drill rigs, tools, and other equipment being used, as well as having the other Osterberg cell available for viewing.  This site visit proved to be very well received when we did it in Nashville at the last load test.  We hope for a big turnout that day. 

I wanted to give everybody a brief update and will be in touch when additional information becomes available in the near future.  Thank you for your interest, and if anyone has any questions regarding this plan, please feel free to call me at your convenience.

Bruce Long

President

Long Foundation Drilling Co.

Previous post is here.

The test site page is here.

The main page for the research project is here.

ADSC Rock-Socketed Drilled Shafts in the SE Research Project Site No.2 – Comments Welcomed

After some lengthy delays, the rock-socketed drilled shaft research sponsored by the Southeast Chapter of the ADSC is back on track.  A second site has been selected at the site of Foundation Technologies, Inc. in Lawrenceville, Georgia.  This site will investigate the resistance of some of the rocks of the Piedmont for drilled shaft design.  The first test site was in Nashville, Tennessee.  The report of the first test site and other information can be found at the test site page.   General information about the complete project, including a list of participating/contributing companies and organizations, can be found at the project page.

Bruce Long (Long Foundation Drilling Company) is the lead for the ADSC on this project and has requested interested parties to provide comment on the test plan for the second site (see links below).  The hope is to have load testing occur this July if every thing comes together properly.  Bruce sent the following email with some refresher material on the Nashville test site and an update on the startup for the Lawrenceville site:

 

First, I would like for everyone to know that the load test program jointly planned between the Atlanta area ASCE Geotechnical community and the Southeast Chapter of the ADSC is alive and well despite some longer than planned delays.  The final boring data has been in hand for some time and Dan Brown and his group have reviewed this information and submitted a preliminary load test program for review and comment.  This program is very similar to the test program that was performed in Nashville a couple of years back.  For informational purposes, the results of that test program has resulted in an increased awareness of the available load carrying capacity in the limestone formations in the area.  Historically, shafts were designed almost exclusively utilizing end bearing with the normal range of values allowed ranging from 60-100 KSF.  In recent months, we have seen projects now being designed with recommended values ranging from 100 up to 250 KSF with an increasing number of designs also relying on skin friction values up to 25 KSF in sound limestone sockets.  The information gained from these load tests has given area engineers increased confidence in raising the bar for future drilled shaft designs.  This will result in lower foundation costs for owners of public and private projects alike.  For those involved in the design process, better information will result in improved design values and an improved competitive position for those willing to utilize this data.

Now we are prepared to move forward with the planned testing in the Atlanta area.  I have attached the final geotechnical report for your review.  There are several people and companies that have generously volunteered their time and expertise to make this happen, Todd Barber with Geo-Hydro Engineers, Inc. being the most notable of these.  His persistence and assistance was invaluable.  Others that contributed in a variety of ways include Mactec, Golder Associates, Georgia Tech and GeoTesting Express.  Thanks to everyone for their efforts.

Also attached is the preliminary memo from Rob Thompson of Dan Brown and Associates.  What he has outlined are suggestions based upon the boring information for two separate Osterberg Load cell tests.  One would be on a shaft that was hand-cleaned, while the second shaft would be machine-cleaned only.  This would allow a comparison to determine the effects (if any) that traditional hand-cleaning has on shaft behavior.  This memo is being sent out with the intention that review and comments from the geotechnical community be considered and incorporated in the final program.  Depending upon the extent of comments, a final meeting could be necessary to discuss any proposed revisions.  If suggestions are minimal, such a meeting might not be required.  In this case, we would proceed with shaft installation and testing as soon as possible.

Thanks for your patience–I think that the final results will be worth the time.  It has been very rare that full scale load testing be done in hard rock areas (Piedmont or Limestone), but if the results of our Nashville area testing are any indication, I think the results will definitely show that the effort was worthwhile.

Please take time to review this information and e-mail or call me with any comments that you might have.  As soon as all comments have been reviewed, we will let everyone know our plan to proceed.  I would like to have comments submitted to me by May 27, 2011.  If there are any questions regarding our plans, schedule, etc., please feel free to contact me at your convenience.

 

I have linked the proposed load test plan memo and the boring information below. Bruce would like comments from interested parties to be submitted by May 27, 2011. Please submit comments to him at blong@lfdc.com.

A blog page for this test site has been created and will be updated as the project progresses. We intend to have a prediction contest similar to the one we had for the Nashville site, so keep checking for information. Better yet, subscribe to our blog using one of the social media links at the top of the right sidebar of the blog.

Load Test Plan Memo from Dan Brown (20 May 2010)

Summary of Test Borings from GeoHydro Engineers (26 Jan 2010)