Category Archives: Foundation Testing

Deep Foundations Research

image      image

In the course of digging throughout the internet for data and information for a couple of projects, I came across some (relatively) recent research reports geared toward improving design of driven piles based on field testing.  A report from The Illinois Center for Transportation at the University of Illinois at Urbana-Champaign is focused on improving pile design through increased resistance factors and nominal bearing values.  A project by the Institute for Transportation at Iowa State University focuses on developing LRFD design procedures for steel piles in Iowa. It was published in two volumes, with Volume I covering the development of LRFD calibrations and a load test database, and Volume II covering field load tests performed for the project.

I have not had time to dig into them yet, so I just offer the links and abstracts to pique your curiosity.  Perhaps you may find something interesting in them, or maybe something applicable to a project.  There is a lot of research going on out there for TRB and NHI, so I figure sharing interesting tidbits helps get things circulated.

Click on the name of each of the research centers above to find out what other things they are doing, available reports, etc.


Improved Design for Driven Piles on a Load Test Program in Illinois, Research Report FHWA-ICT-12-011, Illinois Center for Transportation, University of Illinois at Urbana-Champaign, July 2012 (Authors: Jim Long and Andrew Anderson, )


Dynamic pile testing and one static load test was performed in accordance with ICT project R27-69, “Improved Design for Driven Piles Based on a Pile Load Test Program in Illinois.” The objectives of this project are to (1) increase the maximum nominal required bearing that designers can specify to reduce the number and/or weight of piles, (2) decrease the difference between estimated and driven pile lengths to reduce cutoffs and splice lengths by development of local bias factors for predictive methods used in design, (3) increase reliance of pile setup to increase the factored resistance available to designers, (4) reduce the risk of pile driving damage during construction, and (5) increase the resistance factor (decrease in factor of safety) based on increased data and confidence from load tests in and near Illinois. Project deliverables can be categorized as (1) better prediction methods for stresses during driving, (2) better prediction methods for pile capacities using resistance factors for driven piling based on local calibrations that consider the effects of pile setups, and (3) collections of static and dynamic load test data focused on Illinois soils and geology.



Development of LRFD Procedures for Bridge Piles in Iowa, Volume I: An Electronic Database for PIle LOad Tests (PILOT) (Volume I), Institute for Transportation at Iowa State University, January 2011 (Authors: Matthew Roling, Sri Sritharan, Muhannad T. Suleiman)


For well over 100 years, the Working Stress Design (WSD) approach has been the traditional basis for geotechnical design with regard to settlements or failure conditions. However, considerable effort has been put forth over the past couple of decades in relation to the adoption of the Load and Resistance Factor Design (LRFD) approach into geotechnical design. With the goal of producing engineered designs with consistent levels of reliability, the Federal Highway Administration (FHWA) issued a policy memorandum on June 28, 2000, requiring all new bridges initiated after October 1, 2007, to be designed according to the LRFD approach. Likewise, regionally calibrated LRFD resistance factors were permitted by the American Association of State Highway and Transportation Officials (AASHTO) to improve the economy of bridge foundation elements. Thus, projects TR-573, TR-583 and TR-584 were undertaken by a research team at Iowa State University’s Bridge Engineering Center with the goal of developing resistance factors for pile design using available pile static load test data. To accomplish this goal, the available data were first analyzed for reliability and then placed in a newly designed relational database management system termed PIle LOad Tests (PILOT), to which this first volume of the final report for project TR-573 is dedicated. PILOT is an amalgamated, electronic source of information consisting of both static and dynamic data for pile load tests conducted in the State of Iowa. The database, which includes historical data on pile load tests dating back to 1966, is intended for use in the establishment of LRFD resistance factors for design and construction control of driven pile foundations in Iowa. Although a considerable amount of geotechnical and pile load test data is available in literature as well as in various State Department of Transportation files, PILOT is one of the first regional databases to be exclusively used in the development of LRFD resistance factors for the design and construction control of driven pile foundations. Currently providing an electronically organized assimilation of geotechnical and pile load test data for 274 piles of various types (e.g., steel H-shaped, timber, pipe, Monotube, and concrete), PILOT ( is on par with such familiar national databases used in the calibration of LRFD resistance factors for pile foundations as the FHWA’s Deep Foundation Load Test Database. By narrowing geographical boundaries while maintaining a high number of pile load tests, PILOT exemplifies a model for effective regional LRFD calibration procedures.



Development of LRFD Procedures for Bridge Piles in Iowa, Field Testing of Steel H-Piles in Clay, Sand, and Mixed Soils and Data Analysis (Volume II), Institute for Transportation at Iowa State University, September 2011 (Authors: Kam Weng Ng, Muhannad T. Suleiman, Matthew Roling, Sherif S. AbdelSalam, and Sri Sritharan)


In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured loaddisplacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD

DBA and Missouri S&T Conduct Live Load Test at Foothills Bridge as Construction Wraps Up

Just before Christmas, David, Tim, and Nathan joined Dr. Ronaldo Luna and his graduate student, Devin Dixon, of Missouri University of Science and Technology (formerly the University of Missouri–Rolla) to conduct a live load test on the all but officially complete Foothills Parkway Bridge No. 2., near Pigeon Forge, Tennessee.  During installation of the micropile foundations, DBA and Dr. Luna’s research team installed strain gages in four micropiles and at the base of the pier pedestals at both Piers 1 and 2 of the bridge.  Strain data have been collected during construction of the superstructure.  Following completion of the bridge, the live load test involved loading the bridge with four loaded dump trucks at prescribed locations with respect to the instrumented piers.  Data were collected for several load configurations.  The aim of the research is to better understand the performance of micropiles and micropile groups, particularly with respect to bending.

Visiting the site for the load test provided an opportunity to take some great pictures of this particularly scenic bridge nestled in the foothills of the Smoky Mountains.  A new web album of pictures taken by David has been added to our Picasa page here,  and some aerial photos of the nearly completed bridge taken in December by Aerial Innovations have been added to our Picasa web album Foothills Parkway Bridge No. 2 – From a Bird’s Eye View.

NCHRP Report 461–Static and Dynamic Lateral Loading of Pile Groups

nchrp_rpt_461-Static and Dynamic Loading of Pile Groups

Here is a blast from the past on pile groups: NCHRP Report 461 – Static and Dynamic Lateral Loading of Pile Groups.  I had a request for this report recently, so I found it and figured we needed to post the links to it.  Dan was the lead researcher on this report during his time at Auburn University, and had an all-star line up that included Dr. Mike O’Neill and Dr. Mike McVay, two of the heavy hitters in foundation engineering.  The report introduction gives a good summary of the contents:

A key concern of bridge engineers is the design and performance of pile group foundations under lateral loading events,
such as ship or ice impacts and earthquakes. This report documents a research program in which the following were developed:
(1) a numerical model to simulate static and dynamic lateral loading of pile groups, including structural and soil hysteresis and energy dissipation through radiation; (2) an analytical soil model for nonlinear unit soil response against piles (i.e., p-y curves) for dynamic loading and simple factors (i.e., p-multipliers) to permit their use in modeling groups of piles; (3) experimental data obtained through static and dynamic testing of large-scale pile groups in various soil profiles; and (4) preliminary recommendations for expressions for p-y curves, damping factors, and p-multipliers for analysis of laterally loaded pile groups for design purposes. The report also describes experimental equipment for performing site-specific, static, and dynamic lateral load tests on pile groups.

Several full-scale field tests were conducted on pile groups of 6 to 12 piles, both bored and driven, in relatively soft cohesive and cohesionless soils. All of the groups were loaded laterally statically to relatively large deflections, and groups of instrumented pipe piles were also loaded dynamically to large deflections, equivalent to deflections that might be suffered in major ship impact and seismic events. Dynamic loading was provided by a series of impulses of increasing magnitude using a horizontally mounted Statnamic device.

For a relatively short (50 pages) report, there is a lot of information packed into it gleaned from a lot of full-scale field work.

DBA Wraps Up Load Test Program and Proceeds with Design on St. Croix Bridge

Project rendering courtesy of HDR 

Lateral Statnamic test, picture by David Graham of DBA, click here for a YouTube video

DBA has been selected by MnDOT as a geotechnical and load testing consultant for the design phase load test program and foundation design of a new bridge crossing the the St. Croix River near Oak Park Heights and Stillwater, Minnesota. The new bridge will carry State Highway 36 across the St. Croix River between Minnesota and Wisconsin. Currently, Highway 36 is carried on an 80-year old two-lane vertical lift bridge in downtown Stillwater.  The new bridge will divert the heavy through traffic away from the historic downtown center and reduce travel time for commuters.  The iconic lift bridge will be converted to a pedestrian and bicycle only structure.

Work began this summer on the load test program which consisted of one 8-foot test shaft, two 24-inch driven steel pipe piles, and two 42-inch driven steel pipe piles, all installed in the St. Croix River along the alignment of the new bridge.  Local contractor Carl Bolander & Sons Co. was selected as the general contractor for the load testing program.  Bolander self-performed the installation of the test piles and sub-contracted the construction of the test shaft to Case Foundation Company, of Chicago, Illinois.  Axial load testing of the test shaft was performed by Loadtest, Inc., of Gainesville, Florida, using Osterberg Cells (O-cells).  Dynamic testing of the driven piles using the pile driving analyzer (PDA) was performed by local geotechnical consultant Braun Intertec.  Axial testing of the driven piles and lateral testing of the shaft and one of each size pile was performed using the Statnamic Device by Applied Foundation Testing, Inc. (AFT), of Jacksonville, Florida.  DBA provided pre-test recommendations, assisted MnDOT in construction oversight, provided analysis and review of the test results, and made design recommendations based on the test results.

Following the successful load test program, DBA is working with MnDOT’s structural design consultants for the project, HDR, Inc. and Buckland & Taylor Ltd.  to optimize the bridge design.  Already, the design team has been able to lengthen the bridge spans and eliminate a river pier as a result of the load test results, as was recently reported by Minnesota Public Radio (MPR).  Also, because the total number of drilled shafts required to support the main pier towers has been reduced, construction on the foundations will been moved up to 2013 rather than the original estimated start date in 2014, also reported by MPR.

For more information, please see:

The MnDOT Project Page

The DBA Project Summary Sheet

Huey P. Long Bridge Designated ASCE Civil Engineering Landmark

Photo Credit: Eliot Kamenitz, The Times-Picayune archive (via

The Huey P. Long Bridge over the Mississippi River in New Orleans was recently designated a National Civil Engineering Landmark by the American Society of Civil Engineers. From (via ASCE SmartBrief):

Representatives with the Society of Civil Engineers, including national president Andrew Herrmann, along with state Transportation Secretary Sherri LeBas are expected to attend. They will place a plaque on the bridge, distinguishing it as one of 250 such historic landmarks around the world. The honor places the Depression-era built bridge in the company of the Eiffel Tower, the Panama Canal, the Hoover Dam and the U.S. Capitol.

The $1.2 Billion bridge improvement project is one of several being managed by the Louisiana TIMED Program:

The TIMED (Transportation Infrastructure Model for Economic Development) Program is the single largest transportation program in state history. The TIMED Program was created by Act 16 of the 1989 Louisiana Legislature and was voted for by the people. The $5 billion improvement program includes widening 536 miles of state highways to four lanes on 11 project corridors, widening and/or new construction on three major bridges and improvements to both the Port of New Orleans and Louis Armstrong International Airport. The Program is designed to enhance economic development in Louisiana through an investment in transportation projects.

DBA was involved in the test shaft and base grouting program for the drilled shafts supporting the new pier added to supplement the existing piers of the bridge.  Check out previous posts here.

Two New Technical Manuals From DFI

The Deep Foundations Institute (DFI) has announced the publication of two new deep foundation reference manuals.   Excerpts from the announcement for both manuals are below.  Both manuals are available for order using this form or on-line at this link.

Guideline for Interpretation of Nondestructive Integrity Testing of Augered Cast-in-Place and Drilled Displacement Piles
DFI Augered Cast-In-Place Pile Committee (2011-2012) Chaired by Michael Moran
Tracy Brettmann, Principal Author; Bernard Hertlein, Matthew Meyer, Bria Whitmire, Co-Authors

(Image from DFI)

This guideline provides practical guidance for the interpretation of nondestructive testing (NDT) of the integrity of augered cast-in-place (ACIP) and drilled displacement (DD) piles.  …  This guideline supplements DFI’s two primary publications on ACIP piles: Augered Cast-in-Place Pile Manual (2003) and the Inspector’s Guide for Augered Cast-in-Place Piles (2010). This guideline was developed to provide 1) more detailed explanations of the various test methods available, 2) guidance on interpretation of the results, and 3) some typical examples of the data and interpretation.

Seismic and Lateral Load Design and Testing Guidelines
DFI Seismic and Lateral Loads Committee (2011-2012)
Chaired by Mark Petersen and Zia Zafir (2003-2009)
Robert Kruger, Guideline Editor


(DBA Photo)

This guidance document is intended to assist geotechnical engineers, pile designers, and contractors in analysis, design, and testing of piles and drilled shafts for lateral loads. … … This document discusses the background of different analytical and testing procedures and presents the recommended methods for analysis, design and testing of piles for lateral loads.

Busy Fall Speaking Schedule for DBA

The months of September and October will be busy for several DBA team members speaking at a variety of conferences and events. Dan Brown and John Turner will be speaking at the ADSC/DFI Drilled Shaft Seminar and Field Day in Denver September 12 and 13. Dan will be giving the 4th Annual Osterberg Memorial Lecture at the DFI Educational Trust dinner being held on the evening of the 12th. Dan and John will be speaking mostly on construction issues during the seminar.   


MWGC logoLater in the month, Dan and Robert Thompson are both featured at the 2012 Midwest Geotechnical Conference hosted by Ohio DOT in Columbus, Ohio. Dan will be speaking on base grouted shafts while Robert will give his presentation on the ADSC SE Chapter rock socket load test research program.     


STGEC 2012In October, Dan and Robert appear together again at the 2012 Southeastern Transportation Geotechnical Engineering Conference (STGEC) in Richmond, Virginia. This will be the 43rd installment of this conference, hosted this year by the Virginia DOT. Dan will speak on design-build construction issues for deep foundations, while Robert will again present the load test research project. Dan will also speak at the 26th Central Pennsylvania Geotechnical Conference in Hershey, Pennsylvania in October, and Robert will speak at the ADSC Carolinas Chapter meeting in Greenville, NC.

Project Update–New River Bridge (I-70), St. Louis, MO


Photo Credit: Missouri Department of Transportation

I and my fellow bloggers here at DBA (David Graham and Aaron Hudson) try to keep up with the various projects under construction that we had a part of.  Sometimes it is hard to do once we have left the site after foundations are complete.  Modern information technology makes it much easier, especially since most large infrastructure projects have a significant public outreach effort, either by the project design/build team, or the owning agency.

One such project, the New Mississippi River Bridge (I-70 Bridge) in St. Louis, MO, is really coming along.  If work didn’t get in the way, I could spend a lot of time just browsing project photo galleries, or looking through the project cams.

(Previous posts)

Tim Siegel paper in Fellenius GSP

Our own Tim Siegel, P.E., G.E., D.GE. was one of a handful of people invited to submit papers for the recently published Geotechnical Special Publication (GSP) No. 227: Full-Scale Testing and Foundation Design (Honoring Bengt H. Fellenius).  Tim’s paper is on testing of augered cast-in-place piles.  Four piles were installed with varying auger rotations and then load tested in axial compression to evaluate the effect auger rotation on the axial behavior of the piles.

Just follow the link below to get the paper.  You can purchase the entire GSP No. 227 through the Geo-Institute of ASCE (Disclosure: No one at DBA benefits financially from the purchase).

Siegel, T.C. (2012). “Testing of Augered Cast-in-Place Piles installed with Varying Auger Rotations”, Full-Scale Testing and Foundation Design, Honoring Bengt H. Fellenius, Geotechnical Special Publication No. 227, Edited by M.H. Hussein, K. R. Massarsch, G.E. Likins, and R.D. Holtz, ASCE, pp333-348.


Foundation Design Fellenius

FHWA Research Project: Post-Grouted Drilled Shafts


(Note from Robert: I used material from the team proposal and the article referenced below for this post, with the authors’ permission. Also, DBA is a significant participant in the project and we hope to provide updates as things move along.)

The Federal Highway Administration (FHWA) has partnered with the ADSC: The International Association of Foundation Drilling (ADSC-IAFD) on a comprehensive research project on post-grouted (also called base grouted or tip grouted) drilled shafts. The FHWA and the deep foundations industry are very interested in the proper application and implementation of post-grouting for drilled shafts. The potential benefits of post-grouting have been demonstrated, and the industry has attempted to capitalize on these benefits in numerous ways. Some of these attempts have been successful while others have not, which has led to confusion and even misapplication of post-grouting technology within the industry.

The project will include an extensive synthesis of existing practice and literature, evaluation of theoretical concepts, full-scale field testing, and comprehensive analysis of the field testing to develop design methods. Each phase of work will have a set of deliverables that will go through a rigorous review process. The project is anticipated to be completed sometime in 2014.

The four main objectives of the research program are:

  1. Bound the application of the post-grouting technology for the current state-of-knowledge;
  2. Quantify the improvement mechanism(s) for the post-grouting of drilled shafts;
  3. Develop design methodology(ies) for appropriate applications of post-grouting; and,
  4. Provide method(s) for verification.

To accomplish these objectives, a highly qualified and experienced team of practitioners and researchers has been assembled to execute this project. This team includes industry representatives from construction, design, and academia that can bring a variety of perspectives to the project as well as respond to input from the many stakeholders within the geotechnical and transportation design and construction communities that routinely implement this technology.

Dr. Antonio Marinucci, MBA, P.E., of ADSC-IAFD will serve as Project Manager for the project and will be responsible for coordination and oversight of all project activities. Dr. J. Erik Loehr, PE, of the University of Missouri will serve as Principal Investigator (PI) with overall technical responsibility for the project including technical planning, data collection, synthesis, interpretation, and document production. Three Co-Principal Investigators (Co-PIs) will collaborate with Dr. Loehr to address the technical aspects of the project: Dr. Marinucci of ADSC-IAFD; Dr. Dan Brown, P.E., D.GE of Dan Brown and Associates, PC; and Dr. Jesús Gómez, P.E., D.GE of Schnabel Engineering Consultants, Inc.

An Advisory Panel will be utilized to provide additional objective technical insight regarding planning and execution of the project and development of the project deliverables, as well as unique expertise regarding specific aspects of the proposed work. The Advisory Panel will include:

Mr. Tom Armour, P.E., D.GE of DBM Contractors, Inc.

Dr. Donald Bruce, CEng, D.GE of Geosystems, LP

Mr. Allen Cadden, P.E., D.GE of Schnabel Engineering Consultants, Inc.

Dr. Steven Dapp, P.E. of Dan Brown and Associates, PC

Mr. Michael Muchard of Applied Foundation Testing

Dr. Miguel Pando, PEng of the University of North Carolina at Charlotte.

To provide objective review and evaluation of project plans and deliverables at key stages of the project, a formal Peer Review Panel will be formed composed of representatives from throughout the drilled shaft industry. The peer review process will be coordinated through the drilled shaft technical committees of each of the major stakeholder organizations in the U.S.: the ADSC-IAFD Drilled Shaft Committee; the ASCE/Geo-Institute (ASCE/GI) Deep Foundations Committee; the Deep Foundations Institute (DFI) Drilled Shaft Committee; and the Transportation Research Board (TRB) Committee on Foundations of Bridges and Other Structures.

The final component of the project team will be the ADSC-IAFD Contractor Members, Associate Members, and Technical Affiliates that will provide substantial in-kind contributions to meet the needs of the proposed experimental programs. Likely in-kind contributions from ADSC members will include provision of testing sites and facilities, construction equipment, materials, testing apparatus, as well as services necessary to complete the proposed project.

The configuration of this team consisting of the PIs, the Advisory Panel and the Peer Review Panel will provide a thorough review process as well as “checks-and-balances” against any perceived or realized personal biases regarding the use of post-grouting with drilled shafts. It is believed that the recommendations resulting from this effort will reflect a consensus on the application, design and construction of base-grouted drilled shafts that will be accepted by the industry at-large. This should result in consistent application of this technique by the industry.

For a detailed description of the project, see the article linked below from May 2012 issue of Foundation Drilling magazine, available from the ADSC-IAFD. In the article, Dr. Marinucci provides the first in a series of updates that will be published reporting the progress of the research through the various phases of the project. We’ll provide posts here as new reports are released, as well as posts of all the action when field work gets started!

ADSC-FHWA Research Project: Evaluation and Guidance Development for Post-Grouted Drilled Shafts for Highways