Category Archives: Foundation Testing

FHWA GEC 15 (Foundation Acceptance) Now Published

FHWA has published (posted the PDF!) of Geotechnical Engineering Circular 015 – Acceptance Procedures for Structural Foundations of Transportation Structures.   Work began on this in 2019 and was delayed due to COVID.   Andy Boeckmann, Dan Brown, Erik Loehr, and John Turner of DBA are the authors.  They worked hard with Silas Nichols and the team at FHWA to produce a great guidance document for accepting deep foundations supporting transportation structures.  Here is a bit from the Introduction in Chapter 1 that gives the “big picture” of this GEC:

Foundation acceptance is a crucial component of the design and construction process used to develop transportation infrastructure in the United States today. As considered in this circular, foundation acceptance refers to a process resulting in approval of payment
to the constructor for installation of a deep foundation element. The process should involve the following actions by an owner agency, or entity acting on its behalf:


      1. Establishment of measurable and achievable acceptance criteria that serve as assurance that a foundation element will fulfill all appropriate performance requirements, and


       2. Documented evaluation of the constructed foundation element to demonstrate that the established acceptance criteria have been satisfied.


Foundation acceptance is the culmination of quality assurance (QA) efforts that, when appropriately implemented, provides the owner agency with confidence that a foundation element will fulfill all appropriate performance requirements. In some instances, the
foundation acceptance process may include provisions for cost adjustments for foundation elements that do not strictly satisfy established acceptance criteria, but that are nevertheless judged to satisfy all appropriate performance requirements and which
the owner agency agrees to accept.

Topics covered in this GEC include the framework for accepting deep foundations (project delivery, participants, role of QA/QC,etc.) , roles of inspection and testing, and specific items of concern for drilled shafts, driven piles, micropiles, and continuous flight auger piles.  You can download the PDF at the link below or on the FHWA Geotechnical Publications page HERE.

 

Acceptance Procedures for Structural Foundations of Transportation Structures  (FHWA-HIF-22-024, Geotechnical Engineering Circular 015).  Loehr, E.L., Brown, D.A., Turner, J.P., and Boeckmann, A.Z. (2022).

TRB paper by andy boeckmann and erik loehr on Thermal requirements for drilled shafts

Andy Boeckmann, Ph.D., P.E. (DBA Senior Engineer) and Erik Loehr, Ph.D., P.E. (DBA Senior Principal Engineer) have published a paper on the topic of thermal testing of drilled shafts in the Transportation Research Board (TRB) journal Transportation Research Record.  Their co-author was  Zakaria El-tayash of Burns & McDonnell. 

As the drilled shaft diameters have increased in size over the years, designers and owners have had questions or concerns about the issues of temperature impacts to concrete durability similar to the issues with mass concrete placement for large structural elements.   Some transportation agencies have recently applied mass concrete provisions to drilled shafts, such as limits on maximum temperatures and maximum temperature differentials.  The temperatures commonly observed in large diameter drilled shafts have been observed to cause delayed ettringite formation (DEF) and thermal cracking in above-ground concrete elements.  This has led to the practice of applying to drilled shafts the control provisions that are based on dated practices for above-ground concrete. However, the reinforcement and confinement (embedded in soil and/or rock below grade) unique to drilled shafts should provide resistance to thermal cracking and possibly other effects of mass concrete temperatures.

Conceptual illustration of crack development in early age concrete with time from internal restraint. Adapted from Bamforth (2018) with permission from CIRIA

 

The paper reviews current requirements of several state DOTs  for addressing DEF and thermal cracking, then establishes a rational procedure for design of drilled shafts for durability requirements in response to hydration temperatures.  DEF is addressed through maximum temperature differential limitations while thermal cracking is addressed through calculations that explicitly consider the thermo-mechanical response of concrete for predicted temperatures.  The recommended procedure includes a detailed five step evaluation process.   Additional alternate steps for mitigation techniques and/or monitoring temperature are detailed as well.   The procedures allow for explicit account of project-specific characteristics, including ground conditions, concrete mix design characteristics, drilled shaft geometry, and the quantity of steel reinforcement.

 

Temperature differential between center and edge of shaft versus time from thermal model and from temperature measurements

 

The methodology was developed from guidance established by ACI and CIRIA and provides a rational means for designing drilled shafts for durability without imposing unnecessary constraints that may exacerbate challenges with effective construction of drilled shafts.  Results from application of the procedure indicate consideration of DEF and thermal cracking potential for drilled shafts is prudent, but provisions that have been applied to date are overly restrictive in many circumstances, particularly the commonly adopted 35 ?F maximum temperature differential provision.

You can get the paper from The Transportation Research Record at the link below.

Boeckmann, A.Z., El-tayash, Z., and Loehr, J.E. (2021). “Establishing and Satsifying Thermal Requirements for Drilled Shaft Concrete Based on Durability Considerations”, Transportation Research Record, March 2021.

FHWA GEC 10 Update for 2018 Released!

UPDATE!  Posting of the PDF to the FHWA Resource page has been delayed while the formatting issues noted below are worked out. 

CLICK HERE for a Final DRAFT for use until FINAL document is posted by FHWA.

The long anticipated update to FHWA GEC 10 Drilled Shafts: Construction Procedures and Design Methods has finally been released by FHWA, The same team that authored the major update in 2010 that shifted design from ASD to LRFD also completed this update: Dr. Dan Brown, P.E., D.GE, and Dr. John Turner, P.E., D.GE of DBA, Dr. Erik Loehr, P.E. of the University of Missouri and DBA, and Mr. Ray Castelli, P.E. of WSP.

This version is an update of the 2010 publication.  A complete list of changes made since 2010 is in the opening chapter.  Some of the revisions include:

  • streamlining materials covered in other GEC publications (for example, site investigation and lateral loading) to focus on aspects particular or unique to drilled shafts;
  • updates to reflect the evolution of construction procedures, tooling, materials, drilling fluids, and concrete placement;
  • updated design equations for axial loading, particularly for earthquake loading;
  • updated group design to reflect recent changes to AASHTO design guidelines;
  • updates on integrity testing (including use of Thermal Integrity Profiling, or TIP); and,
  • an outline for a process for assessment and acceptance of drilled shafts based on inspection records and integrity tests.

You can download the new PDF here.  The PDF posted is “preliminary” with some minor formatting and other items to be cleaned up by the fall.

Pre-Bid Load Testing for the Mobile River Bridge and Bayway Public Private Partnership (P3) Project

DBA has been fortunate to be involved as a consult to Alabama Department of Transportation (ALDOT) for the  Mobile River Bridge and Bayway Project.  This project represents Alabama’s largest ever investment for a single infrastructure project.  The project includes a cable stayed bridge over the Mobile River and seven miles of bridge over Mobile Bay.  Bridge foundations therefore represent a major component of the estimated $2 billion project cost.  DBA serves as a foundation consultant under subcontract to Thompson Engineering, Inc..  Thompson is one of the ALDOT Advisory Team partners, the other partners being HDR and Mott MacDonald.

With the tremendous volume of foundations required for the project, the DBA/Thompson team worked with ALDOT’s Geotechnical Division to develop a pre-bid load test program to help reduce some of the risks that would face both ALDOT and prospective concessionaires.  Performing a deep foundation load test program during the procurement phase of a Public Private Partnership (P3) project can help the prospective concessionaires better define foundation design parameters and reduce uncertainties and risks related to constructability of the foundations.  The reduced risk leads to reduced costs by allowing the concessionaire to develop a more efficient design while minimizing contingency costs and potential delays related to foundation constructability or performance.

The load test program was designed to include the most likely foundation types that the prospective teams might use.  Several types of driven piles were installed and tested, including typical square and cylinder concrete piles used on the Alabama coast plus steel H-piles and an open-ended steel pipe pile.

All driven piles were subject to dynamic testing with a Pile Driving Analyzer during driving.  Restrikes with dynamic testing were conducted on all driven piles to evaluate potential strength gain with time.  Jetting techniques were specified for some piles to evaluate this installation technique which could potentially be used during construction.

Traditional axial static load tests were performed on steel HP14x89 and 18in Precast Prestressed Concrete (PPC) square piles.  Rapid (Statnamic) axial load tests were performed on 36 in PCC square piles, 54in PCC cylinder, and 60in steel open-end pipe piles.

A 72in diameter drilled shaft foundation was also installed and tested.  Axial load testing was done using a bi-directional load cell (AFT A-Cell).  Lateral load testing was done using the Statnamic device.

 

Here are some videos of the Statnamic testing, with slow motion action!

 

Foundation contractors that are part of a concessionaire team pursuing the project were allowed to bid the load test program.  Jordan Pile Driving was the successful bidder for the $3.7 million test project.  AFT provided the testing services for the project – dynamic, static, Statnamic, and A-Cell.

A summary of the results can be found in a presentation made to ALDOT at the 62nd Annual Alabama Transportation Conference on February 13, 2019.   (Click HERE to get the presentation). Publication of the results is anticipated to be made in the DFI Journal in the future.

Dan Brown awarded A Golden Beaver

(One more catch-up on “older” news!)

In January of 2018, Dan was awarded the coveted Golden Beaver  Award in Engineering by The Beavers.  The award was given at the 63rd Annual Golden Beavers Award Dinner on January 19, 2018 in Los Angeles.

The Beavers is a social and honorary organization organized and managed by members of the heavy construction industry.

The purpose of the Beavers is to promote goodwill, friendliness and consideration within the heavy engineering construction industry; to give recognition to those men and women who have demonstrated particular skill, responsibility and integrity; and to encourage and support entry of promising young individuals into heavy engineering construction.

The Beavers hold two major events annually. The Beavers Awards Dinner is held in mid-January, where individuals are recognized with a Golden Beaver Award for their achievements and contributions to the heavy construction industry in the categories of Management, Supervision, Engineering and Service & Supply.

Dan was honored with the award for his expertise and contributions to the deep foundations industry and its impacts on the heavy construction industry.

 

TH 53 Bridge Begins to Rise from the Ground

Bridge and Subsurface Rendering
Bridge and Subsurface Rendering (rendering courtesy of MnDOT)

A lot has changed from a year ago at the TH 53 Bridge sight near Virginia, Minnesota.  This time last year, the design-phase test pile program was wrapping up with three Statnamic load tests and we had just completed our initial geologic field investigation.  Since then, significant excavation, rockfall protection, and foundation work has been completed.  During summer and fall of 2015, DBA worked closely with contractors Hoover Construction and Pacific Blasting to maintain rockfall protection throughout the East Abutment and Pier 1 (East Pier) excavation process.  Official ground breaking occurred last November and foundation work started shortly after.  A total of 32, 30-in micropile foundations have been installed by Veit Specialty Contracting  and Kiewet Infrastructure  has completed a temporary causeway across the massive Rouchleau Pit by placing over 300,000 cubic yards of fill.

With the foundations of both piers complete, and the pier towers are starting to rise up, where they will carry the bridge deck 200 ft above.  The abutments are also taking shape with rock bearing concrete footings now poured on both sides of the pit.  The only foundation work left is to install tieback anchors at the East Abutment, which will reduce the lateral loading of the tall piers. This bridge is going to get packed with cars once it´s completed, that means there´s going to be lots of accidents. It´s not a bad idea to call One Sure Insurance to get covered before all that.

In a little over a year, the bridge is scheduled to open to traffic.  You can keep track of the progress through the project web cam.

Current View of Site, Piers Beginning to Rise
Current View of Site, Piers Beginning to Rise (photo from OxBlue Web Cam)

NCHRP Synthesis 478 – Design and Load Testing of Large Diameter Open-Ended Driven Piles

nchrp_syn_478_Design and Load Testing of Large Diameter Open-Ended Driven Piles_2015

The Transportation Research Board (TRB) has released a synthesis report prepared by Dan and Robert on large diameter piles: NCHRP Synthesis 478, Design and Load Testing of Large Diameter Open-Ended Driven Piles.  The report is a summary of the state of practice with regard to Large Diameter Open-Ended Piles (LDOEPs) in the transportation industry.  We conducted a survey of state DOTs as well as interviews with private practitioners to summarize current practices as well as recommend best practices with regard to the selection, design, installation, and testing of LDOEPs.   Several state DOTs are using LDOEPs more regularly where large foundation loads may exist and/or the piles are subject to significant unsupported length due to scour, liquefaction, or very weak surficial soils. Marine construction conditions also favor the use of these piles, particularly where pile bents might be employed to eliminate footings.

You can download a PDF of the report or purchase a hard copy at the link below.

Brown, D.A. and Thompson, W.R. (2015). NCHRP Synthesis 478, Design and Load Testing of Large Diameter Open-Ended Driven Piles, Transportation Research Board, National Academies, Washington, D.C.

DBA Engineers Perform “Extreme” Geologic Investigation

DBA engineers prepare to go over the edge of the 200-ft tall west wall of the Rouchleau mine pit with the load test site in the background. From left to right: David Graham, Nathan Glinski, Ryan Turner, and Paul Axtell
DBA engineers prepare to go over the edge of the 200-ft tall west wall of the Rouchleau mine pit with the load test site in the background. From left to right: David Graham, Nathan Glinski, and Paul Axtell (far right).

DBA is currently working with structural designer Parsons to design what will be Minnesota’s tallest bridge.  The bridge will span the currently inactive Rouchleau open pit iron ore mine near Virginia, Minnesota. MnDOT is moving the alignment of the existing Hwy 53 to make way for future mining in the area.  DBA is the lead geotechnical designer on the project in addition to being contracted as MnDOT’s load test expert for the ongoing design phase load test program.

As part of our site investigation to gather information on rock fall and the site geology, five DBA engineers (John Turner, Paul Axtell, Tim Siegel, Nathan Glinksi, and David Graham) got up close and personal with the site by rappelling off the near vertical cut faces on either side of the Rouchleau pit! Traversing the over 200-ft tall cut faces of the nearly 2-billion year Biwabik Formation rock formation by rope and harness, we collected valuable geologic data.  We also took some great pictures like the ones posted to our Google Photos account.  In addition to the still pictures, we took some videos of a few rock fall tests, which are on our YouTube channel.

If you would like to know more about this interesting project on Minnesota’s Iron Range, you can check out our project summary sheet, visit MnDOT’s project page, or stay tuned to this blog for more updates.  There is also an online article about the project that was recently published by Civil Engineering Magazine.

Foundations for the New Sacremento Entertainment and Sports Center

 

kingsarenanew_670

Contributed by Rob Saunders, P.E. – DBA

DBA has been working on an exciting new project currently under construction in downtown Sacramento, California: the new Sacramento Arena, known as the Entertainment and Sports Center (ESC).  The ESC will be a multi-use, publicly owned indoor arena. The Sacramento Kings will be the primary tenant and the arena is expected to host other indoor sports and music concerts, as well.  Once completed, the ESC will replace Sleep Train Arena as the home of the Kings.  According to Kings Chairman Vivek Ranadive, the 17,500-seat arena will be “one of the most iconic structures on the planet … It’s going to put Sacramento on the world map.”

turner

Turner Construction is the head of development for the new arena. Malcolm Drilling Company was awarded the contract to design and construct the foundation system.  DBA worked closely with Malcolm to design Omega piles (a drilled and grouted displacement pile) to serve as the foundations for the new arena.  The site presented unique design challenges, including liquefiable soil conditions and existing deep foundations from the demolisLogo_Malcolm_Stacked_Bluehed portion of the Downtown Plaza.

DBA’s design incorporates 18” and 24”  Omega piles.  An extensive site-specific load test program was performed to determine the axial resistances of the piles.  Eight test piles were instrumented with strain gauges to measure the load distribution in the piles.  Supplemental cone penetration testing was performed following load testing to better correlate the load test results with the subsurface conditions.

The piles were designed to resist ground motions from seismic events using site-specific ground curvature data developed by Pacific Engineering and Analysis. The piles were designed to resist the curvature at the anticipated pile section with only a single center reinforcing bar, eliminating the need to extend the entire cage to the bottom of the pile. This detail in the design is very important to ease the pile installation for the site conditions.

The final design incorporates a total of 952 piles to support the arena structure (346 18” dia. Piles and 606 24” dia. piles). The new arena is estimated to cost $477 million, with $255 million of that being funded by the City of Sacramento. The rest of the arena ($222 million) will be funded by the Sacramento Kings. Construction began October 29, 2014 and is planned to be completed by October of 2016.

The groundbreaking for the project was featured by the Sacremento Bee on October 29, 2014 (link).

Kansas City Load Test Photos Added

BPU Load Test

Last spring, DBA conducted a construction phase load test program for a U.S. Army Corps of Engineers floodwall improvement project  along the Missouri River in Kansas City, Kansas.  Located on property owned and maintained by the Kansas City Board of Public Utilities (BPU), the BPU floodwall was slated for structural improvements including a series of buttresses founded on 24-in drilled shafts.  As part of the project contract a load test program performed under the direction of a qualified P.E. and D.GE was required.  General contractor L.G. Barcus & Sons, Inc., secured our Paul Axtell, P.E., D.GE as the qualified load test expert.  DBA teamed up with load testing subcontractor Applied Foundation Testing, Inc., to perform the static load tests.

The load test program requirements included three test shafts, a statically loaded axial test shaft, a statically loaded lateral test shaft, and a combined statically loaded axial and lateral test shaft.  The required combined lateral and axial test shaft provided some unique challenges with respect to applying the loads and collecting data.  As can be seen in the picture above, the axial load was applied using dead weights.

We have added selected pictures from this unique project to our web albums, which can be viewed here.